PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 137-143

A DUAL-MODE RESONATOR-FED GAP COUPLED FILTERING ANTENNA WITH IMPROVED SELECTIVITY AND BANDWIDTH

By Y. Wang, Y.-L. Chen, J.-F. Qian, and Y. Cao

Full Article PDF (456 KB)

Abstract:
A novel multi-mode resonator-fed filtering patch antenna with improved selectivity and bandwidth is proposed in this paper. Unlike well-known cascaded-resonator structure, the proposed filtering antenna shows five poles in the reflection coefficient response utilizing only one resonator. The gap-coupled radiating part introduces two gain zeros along each side of the gain response. Meanwhile, the dual-mode resonator feeding structure of the antenna will also produce another two gain zeros. All these four gain zeros highly improve the selectivity of the filtering antenna without increasing the number of coupling resonators. In addition, the bandwidth of the antenna is also considerably extended using this feeding structure. For validation, a prototype is designed, fabricated, and measured. The measured results agree well with the simulated ones.

Citation:
Y. Wang, Y.-L. Chen, J.-F. Qian, and Y. Cao, "A Dual-Mode Resonator-Fed Gap Coupled Filtering Antenna with Improved Selectivity and Bandwidth," Progress In Electromagnetics Research Letters, Vol. 87, 137-143, 2019.
doi:10.2528/PIERL19071507
http://www.jpier.org/pierl/pier.php?paper=19071507

References:
1. Chuang, C.-T. and S.-J. Chung, "Synthesis and design of a new printed filtering antenna," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1036-1042, Mar. 2011.
doi:10.1109/TAP.2010.2103001

2. Lin, C.-K. and S.-J. Chung, "A filtering microstrip antenna array," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 11, 2856-2863, Nov. 2011.
doi:10.1109/TMTT.2011.2160986

3. Chen, F.-C., H.-T. Hu, R.-S. Li, Q.-X. Chu, and M. J. Lancaster, "Design of filtering microstrip antenna array with reduced sidelobe level," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 903-908, Feb. 2017.
doi:10.1109/TAP.2016.2639469

4. Mao, C.-X., et al., "Dual-band patch antenna with filtering performance and harmonic suppression," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4074-4077, Sep. 2016.
doi:10.1109/TAP.2016.2574883

5. Zhang, X.-Y., W. Duan, and Y.-M. Pan, "High-gain filtering patch antenna without extra circuit," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5883-5888, Dec. 2015.
doi:10.1109/TAP.2015.2481484

6. Lin, C. K. and S. J. Chung, "A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response," IEEE Antennas Wireless Propag. Lett., Vol. 10, 381-384, 2011.

7. Duan, W., X. Y. Zhang, Y.-M. Pan, J.-X. Xu, and Q. Xue, "Dual-polarized filtering antenna with high selectivity and low cross polarization," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4188-4196, Oct. 2016.
doi:10.1109/TAP.2016.2594818

8. Wu, J., Z. Zhao, Z. Nie, and Q.-H. Liu, "A printed unidirectional antenna with improved upper band-edge selectivity using a parasitic loop," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1832-1837, Apr. 2015.
doi:10.1109/TAP.2015.2392112

9. Zhang, Y., X.-Y. Zhang, L.-H. Ye, and Y.-M. Pan, "Dual-band base station array using filtering antenna elements for mutual coupling suppression," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3423-3430, Aug. 2016.
doi:10.1109/TAP.2016.2574872

10. Tang, M.-C., Y. Chen, and R. W. Ziolkowski, "Experimentally validated, planar, wideband, electrically small, monopole filtennas based on capacitively loaded loop resonators," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3353-3360, Aug. 2016.
doi:10.1109/TAP.2016.2576499

11. Jin, J.-Y., S.-W. Liao, and Q. Xue, "Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2125-2130, Feb. 2018.
doi:10.1109/TAP.2018.2804661

12. Zhang, B. H. and Q. Xue, "Filtering antenna with high selectivity using multiple coupling paths from source/load to resonators," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4320-4325, May 2018.
doi:10.1109/TAP.2018.2839968

13. Mao, C.-X., et al., "An integrated filtering antenna array with high selectivity and harmonics suppression," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 6, 1798-1805, Jun. 2016.
doi:10.1109/TMTT.2016.2561925

14. Qian, J.-F., F.-C. Chen, Q.-X. Chu, Q. Xue, and M. J. Lancaster, "A novel electric and magnetic gap coupled broadband patch antenna with improved selectivity and its application in MIMO system," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5625-5629, Jul. 2018.
doi:10.1109/TAP.2018.2860129

15. Hu, H. T., F. C. Chen, and Q. X. Chu, "Novel broadband filtering slotline antennas excited by multi-mode resonators," IEEE Antennas Wireless Propag. Lett., Vol. 16, 489-492, 2017.
doi:10.1109/LAWP.2016.2585524

16. Lee, K. F., K. Y. Ho, and J. S. Dahele, "Circular-disk microstrip antenna with an air gap," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 880-884, Aug. 1984.
doi:10.1109/TAP.1984.1143428

17. Morabito, A. F., "Synthesis of maximum-efficiency beam arrays via convex programming and compressive sensing," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2404-2407, 2017.
doi:10.1109/LAWP.2017.2721218


© Copyright 2010 EMW Publishing. All Rights Reserved