Vol. 89
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-04
Rumsey's Reaction Concept Generalized
By
Progress In Electromagnetics Research Letters, Vol. 89, 1-6, 2020
Abstract
The reaction concept, introduced by Rumsey in 1954, describes interaction between time-harmonic electromagnetic sources through the fields radiated by the sources. In the original form the concept was a scalar quantity defined by three-dimensional field and source vectors. In the present paper, the representation is extended to four dimensions applying differential-form formalism. It turns out that, in a coordinate-free form, the reaction concept must actually be a one-form, whose temporal component yields Rumsey's scalar reaction. The spatial one-form component corresponds to a three-dimensional Gibbsian-vector reaction which consists of electromagnetic force terms. The medium is assumed homogeneous and isotropic in this paper.
Citation
Ismo Veikko Lindell, and Ari Sihvola, "Rumsey's Reaction Concept Generalized," Progress In Electromagnetics Research Letters, Vol. 89, 1-6, 2020.
doi:10.2528/PIERL19091705
References

1. Rumsey, V. H., "Reaction concept in electromagnetic theory," Phys. Rev., Vol. 94, No. 6, 1483-1491, June 1954.
doi:10.1103/PhysRev.94.1483

2. Rumsey, V. H., "Some new forms of Huygens’ principle," IRE Trans. Antennas Propagat., Special issue, S103–S116, December 1959.

3. Gibbs, J. W., Vector Analysis, Dover, New York, 1960.

4. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, 1036-1046, 1972.
doi:10.1109/PROC.1972.8851

5. Altman, C. and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, Kluwer, Dordrecht, 1991.
doi:10.1007/978-94-015-7915-5

6. Kong, J. A., Electromagnetic Wave Theory, Section 5.2, EMW Publishing, Cambridge MA, 2005.

7. Harrington, R. F., Time-Harmonic Electromagnetic Fields, 340-371, McGraw-Hill, New York, 1961.

8. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

9. Cohen, M. H., "Application of the reaction concept in scattering problems," IRE Trans. Antennas Propagat., Vol. 3, No. 4, 193-199, 1955.
doi:10.1109/TAP.1955.1144329

10. Richmond, J. H., "A reaction theorem and its application to antenna impedance calculations," IRE Trans. Antennas Propagat., Vol. 9, No. 6, 515-520, November 1961.
doi:10.1109/TAP.1961.1145068

11. Balanis, C. A., "Advanced Engineering Electromagnetics," Section 7.6, Wiley, New York, 1989.

12. Wang, N. N., J. H. Richmond, and M. C. Gilreath, "Sinusoidal reaction formulation for radiation and scattering from conducting surfaces," IEEE Trans. Antennas Propag., Vol. 23, No. 3, 376-382, May 1975.
doi:10.1109/TAP.1975.1141080

13. Welch, W. J., "Reciprocity theorems for electromagnetic fields whose time dependence is arbitrary," IRE Trans. Antennas Propagat., Vol. 8, No. 1, 68-73, 1960.
doi:10.1109/TAP.1960.1144806

14. Bojarsky, N. N., "Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time-advanced and time-retarded fields," J. Acoust. Soc. Am., Vol. 74, No. 1, 281-285, 1983.
doi:10.1121/1.389721

15. Lindell, I. V., Differential Forms in Electromagnetics, Wiley and IEEE Press, Hoboken NJ, 2004.
doi:10.1002/0471723096

16. Lindell, I. V., Multiforms, Dyadics, and Electromagnetic Media, Hoboken NJ, Wiley and IEEE Press, 2015.

17. Mayes, P. E., "The equivalence of electric and magnetic sources," IRE Trans. Antennas Propagat., Vol. 6, No. 4, 295-296, July 1958.

18. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd Edition, Wiley and IEEE Press, Piscataway NJ, 1995.