Vol. 89
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-23
Linear Phase SIW Filter with Good Selectivity
By
Progress In Electromagnetics Research Letters, Vol. 89, 105-111, 2020
Abstract
This letter presents an approach to design a linear phase substrate integrated waveguide (SIW) bandpass filter with good selectivity. The topology of the proposed filter is implemented based on cross and bypass coupling schemes, which simultaneously introduce a linear phase response and good selectivity, respectively. According to the proposed topology, a multilayer SIW filter is presented to realize the two kinds of couplings and preserve a compact size. Then, the defected ground structure is adopted to further improve the out-of-band rejection. To demonstrate the proposed design method, one double-layered SIW bandpass filter is fabricated and measured. Measured results show that the proposed filter has a linear phase response and good out-of-band rejection, as well as a good agreement between simulated and measured results.
Citation
Weimin Hou, and Qingshan Tang, "Linear Phase SIW Filter with Good Selectivity," Progress In Electromagnetics Research Letters, Vol. 89, 105-111, 2020.
doi:10.2528/PIERL19120904
References

1. Hsiao, C. Y. and T. L. Wu, "A novel dual-function circuit combining high-speed differential equalizer and common-mode filter with an additional zero," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 9, 617-619, Sep. 2016.
doi:10.1109/LMWC.2014.2328896

2. Chen, X.-P., W. Hong, T.-J. Cui, J.-X. Chen, and K. Wu, "Substrate integrated waveguide (SIW) linear phase filter," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 787-779, Nov. 2005.
doi:10.1109/LMWC.2005.859021

3. Szydlowski, L. and M. Mrozowski, "Self-equalized waveguide filter with frequency-dependent (resonant) couplings," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 11, 769-771, Nov. 2014.
doi:10.1109/LMWC.2014.2303171

4. Szydlowski, L. and M. Mrozowski, "A linear phase filter in quadruplet topology with frequencydependent couplings," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 1, 32-34, Jan. 2014.
doi:10.1109/LMWC.2013.2288178

5. Zhu, F., W. Hong, J.-X. Chen, and K. Wu, "Wide stopband substrate integrated waveguide filter using corner cavities," Electro. Lett., Vol. 49, No. 1, 50-52, Jan. 2013.
doi:10.1049/el.2012.3891

6. Lee, B., T. H. Lee, K. Lee, M. S. Uhm, and J. Lee, "K-band substrate-integrated waveguide resonator filter with suppressed higher-order mode," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 6, 367-369, Jun. 2015.
doi:10.1109/LMWC.2015.2421313

7. Guan, X. H., Y. Yuan, H. W. Liu, and W. Huang, "A three-pole substrate integrated waveguide bandpass filter using new coupling scheme," Radioengineering, Vol. 24, No. 3, 703-707, Sep. 2015.
doi:10.13164/re.2015.0703

8. Chu, P., et al. "Wide stopband bandpass filter implemented with spur stepped impedance resonator and substrate integrated coaxial line technology," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 218-220, Apr. 2014.
doi:10.1109/LMWC.2013.2295219

9. Moro, R., S. Moscato, M. Bozzi, and L. Perregrini, "Substrate integrated folded waveguide filter with out-of-band rejection controlled by resonant-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 214-216, Apr. 2015.
doi:10.1109/LMWC.2015.2400927

10. Jia, D.-H., Q.-Y. Feng, Q.-Y. Xiang, and K. Wu, "Multilayer substrate integrated waveguide (SIW) filters with higher-order mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 9, 678-680, Sep. 2016.
doi:10.1109/LMWC.2016.2597222

11. Jia, D.-H., Q.-Y. Feng, and Q.-Y. Xiang, "Two- and four-pole multilayer SIW filter with high selectivity and higher-order mode suppression," Frequenz, Vol. 73, No. 5–6, 209-217, Feb. 2019.
doi:10.1515/freq-2018-0214

12. Hong, J. S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619

13. Amari, S. and U. Rosenberg, "Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 10, 3135-3141, Oct. 2005.
doi:10.1109/TMTT.2005.855359