PIER Letters
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 91 > pp. 49-57


By V. P. Kalantaryan, R. Martirosyan, Y. Babayan, and R. Khazaryan

Full Article PDF (235 KB)

A study on the use of non-ionizing and non-thermal millimeter electromagnetic radiation in tumor chemotherapy was conducted. DNA released from sarcoma 45 tumor (tDNA) and healthy rats (hDNA) in water-saline solution was irradiated during 90 min by frequencies at both resonates for oscillations of water molecular structures (at 64.5 GHz and 50.3 GHz) and non-resonance (48.3 GHz). Non-irradiated and irradiated tDNA and hDNA binding constants with anti-tumorous drugs doxorubicin (DX) and netropsin (NT) were studied. The absorption spectra of non-irradiated and irradiated complexes of DNA with DX and NT were obtained by spectroscopic method. From the absorption spectra, binding constants at 290 K, 300 K, and 310 K temperatures have been determined. According to our calculations doxorubicin and netropsin with irradiated DNA form were more stable complexes and much stronger with tDNA irradiated at resonant frequencies: it was observed doxorubicin and netropsin binding selectivity to irradiated tDNA in-vitro experiments. For a DNA irradiation at resonant frequencies of 64.5 GHz and 50.3 GHz the binding constant K to DX and to NT is almost an order of magnitude higher than for the non-irradiated DNA. The obtained data suggest that the irradiation of malignant tumors by non-thermal (ultra-weak intensity) millimeter electromagnetic waves in combination with anticancer drugs may be promising for clinical oncology. The same antitumor effect can be achieved at much lower doses of medicines (considerable dose reduction). This is essential from the point of view of the application of gentle therapies for patients and the reduction of expenses associated with acquisition of expensive medicines.

V. P. Kalantaryan, R. Martirosyan, Y. Babayan, and R. Khazaryan, "On the Possibility of Using Non-Ionizing Electromagnetic Radiation (Millimeter Waves) in Oncology," Progress In Electromagnetics Research Letters, Vol. 91, 49-57, 2020.

1. Jimenez, H., et al., "Use of non-ionizing electromagnetic fields for the treatment of cancer," History of Radiofrequency Electromagnetic Fields (RF EMF), Front Biosci. (Landmark Ed.), Vol. 23, 284-297, 2018.

2. Mattsson, M. O. and M. Simko, "Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz," Review, Vol. 2019, No. 12, 347-368, 2019.

3. Betskii, O. V., S. V. Savelev, and L. A. Morozova, "Millimeter and terahertz waves in solution of pharmacological agents of biological origin," Biomedical Radioelectronics, Vol. 4, 42-46, 2017.

4. Kalantaryan, V. P., P. O. Vardevanyan, Y. S. Babayan, E. S. Gevorgyan, S. N. Hakobyan, and A. P. Antonyan, "Influence of low intensity coherent Electromagnetic Millimeter Radiation (EMR) on AQUA solution of DNA," Progress In Electromagnetics Research Letters, Vol. 13, 1-9, 2010.

5. Tadevosyan, H. H., V. P. Kalantaryan, and A. H. Trchounian, "Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antiobiotics," Cell Biochemestry & Biophysics, Vol. 51, No. 2–3, 97-103, Jul. 2008.

6. Hakobyan, S. N., M. A. Shahinyan, and Yu. S. Babayan, "Stability of irradiated DNA complexes from sarcoma 45 tumors with mitoxantrone at small fillings," Biophys. Review and Letters, Vol. 11, No. 4, 139-147, 2016.

7. Vardevanyan, P. O., A. P. Antonyan, M. A. Shahinyan, and M. S. Mikaelyan, "Influence of millimeter electromagnetic waves on fluorescence of water-saline solutions of Human Serum Albumin," J. of Applied Spectroscopy, Vol. 83, No. 3, 496-499, 2016.

8. Shenberg, A. S., M. G. Uzbekov, S. N. Shihov, A. S. Bazyan, and G. M. Chernyako, "Some neyrotrop effects of low intensity electromagnetic waves on the rats with different typological pecularities of the highest neural activity," Journal of the Highest Neural Activity, Vol. 50, 867-877, 2000.

9. Minasyan, S. M., G. Y. Grigoryan, S. G. Saakyan, A. A. Akhumyan, and V. P. Kalantaryan, "Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the Hypothalamus in rats," Neuroscience and Behavioral Physiology, Vol. 37, No. 2, 175-180, 2007.

10. Kalantaryan, V., R. Martirosyan, Yu. Babayan, and P. Vardevanyan, "Influence of nonionizing millimeter electromagnetic radiation on tumor and healthy DNA," Physica Medica, Vol. 52, suppl. 1, 1-2, 2018.

11. Kalantaryan, V. P., S. N. Hakobyan, and P. O. Vardevanyan, "Effect of weak electromagnetic waves on thermal properties of biomolecule water solutions," J. of Contemporary Physics, Vol. 53, No. 2, 231-235, 2018.

12. Hakobyan, S. N., V. P. Kalantaryan, and Yu. S. Babayan, "Effect of non-thermal millimeter electromagnetic radiation on thermodynamic parameters of the binding of ligands with DNA," Biol. J. Armenia, Vol. 70, No. 1, 22-27, 2018.

13. Logani, M. K., I. Szabo, V. R. Makar, A. Bhanushali, S. I. Alekseev, and M. C. Ziskin, "Effect of millimeter wave irradiation on tumor metastasis," Bioelectromagnetics, Vol. 27, 258-264, 2006.

14. Barbault, A., et al., "Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach," J. Exp. Clin. Cancer Res., Vol. 28, No. 1, 51-60, Apr. 2009.

15. Costa, F. P., et al., "Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields," Br. J. Cancer, Vol. 105, No. 5, 640-648, Aug. 2011.

16. Zimmerman, J. W., et al., "Cancer cell proliferation is inhibited by specific modulation frequencies," Br. J. Cancer, Vol. 106, No. 2, 307-313, Jan. 2012.

17. Makar, V. R., M. K. Logani, A. Bhanushali, S. I. Alekseev, and M. C. Ziskin, "Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell,and macrophage functions," Bioelectromagnetics, Vol. 27, 458-466, 2006.

18. Logani, M. K., A. Bhanushali, A. Anga, A. Majmundar, I. Szabo, and M. C. Ziskin, "Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma," Bioelectromagnetics, Vol. 25, 516-523, 2004.

19. Caravalho, C., R. X. Santos, and S. Cardoso, "Doxorubicin: The good, the bad and the ugly effect," Current Medicinal Chemistry, Vol. 16, No. 25, 3267-3285, 2009.

20. Airodi, M., G. Bazone, G. Gennaro, A. M. Giuliani, and M. Giustini, "Interaction of Doxorubicin with polynucleotides. A spectroscopic study," Biochemistry, Vol. 53, 2197-2207, 2014.

21. Perez-Arnaiz, C., N. Busto, J. M. Leal, and B. Garcia, "New insights into the mechanism of the DNA/Doxorubicin interaction," J. Phys. Chem. B, Vol. 118, No. 5, 1288-1295, 2014.

22. Jawad, B., L. Pouldel, R. Polgornik, N. F. Steinmetz, and W. Ching, "Molecular mechanism and binding free energy of doxorubicin interaction in DNA," Phys. Chem. Chem. Phys., Vol. 21, 3877-3893, 2019.

23. Tartakoff, S. S., J. M. Finan, E. J. Curtis, H. M. Anchukaitis, D. J. Couture, and S. Glazier, "Investigation into DNA-binding mode of doxorubicin," Organic Biomolecular Chemistry, Vol. 17, 1992-1998, 2019.

24. Gharibyan, J. V., L. E. Nersesyan, and Yu. S. Babayan, "Combined influence of millimeter waves with antitumor drug doxorubicin on structure of tumor DNA," Science-medical J., Vol. 3, 28-33, 2006.

25. Partha, M. D. and S. Rakesh, "DNA methylation and cancer," J. Clinical Oncology, Vol. 22, No. 22, 4632-4642, 2004.

26. Kalantaryan, V., R. Martirosyan, L. Nersesyan, A. Aharonyan, I. Danielyan, H. Stepanyan, J. Gharibyan, and N. Khudaverdyan, "Effect on tumoral cells of low intensity electromagnetic waves," Progress In Electromagnetics Research Letters, Vol. 20, 98-105, 2011.

27. Babayan, Yu. S. and J. V. Gharibyan, "Structural peculiarities of tumor DNA of sarcoma 45," Biofizica, Vol. 35, No. 4, 592-596, 1990.

28. Babayan, Yu. S., V. P. Kalantaryan, R. S. Ghazaryan, M. A. Parsadanyan, and P. O. Vardevanyan, "The influence of low energy millimeter electromagnetic waves on the stability of DNA molecules in solution," Biofizica, Vol. 52, No. 2, 382-384, 2007.

29. Rodionov, B. N., "Energo-informational effect of low-energetic electromagnetic radiations on biological objects," New Medical Technologies Report, Vol. 6, No. 3-4, 24-29, 1999.

30. Babayan, Yu. S., A. A. Tadevosyan, G. L. Kanaryan, V. P. Kalantaryan, and P. O. Vardevanyan, "The influence of coherent electromagnetic waves of millimeter range on the properties of the DNA solutions," Biomedicine Radioengineering, Vol. 2, 52-57, 2009.

31. Parker, B. S., A. Rephaeli, A. Nudelman, D. K. Phillips, and S. M. Cutts, "Formation of mitoxantrone adducts in human tumor cells: Potentiation by AN-9 and DNA methylation," Oncology Research, Vol. 14, No. 6, 279-290, 2009.

32. Mc Ghee, J. D. and P. H. von Hippel, "Theoretical aspects of DNA-protein interactions: Cooperative and non-cooperative binding of large ligands to one dimensional homogeneous lattice," J. Mol. Biol., Vol. 84, No. 3, 469-489, 1974.

© Copyright 2010 EMW Publishing. All Rights Reserved