PIER Letters
 
Progress In Electromagnetics Research Letters
ISSN: 1937-6480
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 91 > pp. 145-152

LOW COST SUBSTRATE BASED COMPACT ANTENNAS FOR 4G/5G SIDE-EDGE PANEL SMARTPHONE APPLICATIONS

By I. S. Masoodi, I. Ishteyaq, K. Muzaffar, and M. Idrees Magray

Full Article PDF (569 KB)

Abstract:
The integrated design of 4G LTE and mmWave 5G antennas based on a low cost substrate is proposed for mobile terminals. The 4G LTE antenna is designed along with the millimeter wave 5G antenna element, and this integrated module is mounted orthogonally to cater for smartphone applications. The 4G LTE module consists of two orthogonally placed compact asymmetric coplanar strip (ACS) fed antennas which caters to LTE1900, LTE2300, and LTE2500 bands. ACS-fed antennas operate from 1.8 to 2.7 GHz with a reasonable gain ranging between 1.5 and 2.9 dBi. The mmWave 5G antenna module comprises two compact Vivaldi antennas with wideband operational bandwidth ranging from 23 to 39 GHz. Each mmWave 5G antenna attains 1-dB gain bandwidth of 47.6% indicating high radiation bandwidth across the operating frequency band.Orthogonal pattern diversity is achieved for the usage of smartphone in both portrait and landscape modes. The whole antenna architecture is accommodated to the panel of height 6 mm inside a fabricated three dimensional mobile phone case. Simulated and measured results are presented with technical justification.

Citation:
I. S. Masoodi, I. Ishteyaq, K. Muzaffar, and M. Idrees Magray, "Low Cost Substrate Based Compact Antennas for 4G/5G Side-Edge Panel Smartphone Applications," Progress In Electromagnetics Research Letters, Vol. 91, 145-152, 2020.
doi:10.2528/PIERL20041003
http://www.jpier.org/pierl/pier.php?paper=20041003

References:
1. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454

2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

3. Kurvinen, J., H. Kähkönen, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, "Co-designed mm-wave and LTE handset antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1545-1553, Mar. 2019.
doi:10.1109/TAP.2018.2888823

4. Idrees Magray, M., G. S. Karthikeya, K. Muzaffar, and S. K. Koul, "Corner bent integrated design of 4G LTE and mmWave 5G antennas for mobile terminals," Progress In Electromagnetics Research M, Vol. 84, 167-175, 2019.
doi:10.2528/PIERM19062603

5. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, No. 2, 271-279, Feb. 2017.
doi:10.1049/iet-map.2016.0738

6. Idrees Magray, M., G. S. Karthikeya, K. Muzaffar, and S. K. Koul, "Compact co-design of conformal 4G LTE and mmWave 5G antennas for mobile terminals," IETE Journal of Research, 2019.

7. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, Dec. 2017.
doi:10.1109/TAP.2017.2671028

8. Li, X., X. Shi, W. Hu, P. Fei, and J. Yu, "Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 388-391, 2013.
doi:10.1109/LAWP.2013.2252414

9. Rajkumar, R. and U. K. Kommuri, "A compact ACS-fed mirrored L-shaped monopole antenna with SRR loaded for multiband operation," Progress In Electromagnetics Research C, Vol. 64, 159-167, 2016.
doi:10.2528/PIERC16031501

10. Priyadarshi, R., M. P. Singh, H. Tripathi, and P. Sharma, "Design and performance analysis of Vivaldi antenna at very high frequency," 2017 Fourth International Conference on Image Information Processing (ICIIP), 1-4, Shimla, 2017.

11. Jarufe, C., et al., "Optimized corrugated tapered slot antenna for mm-Wave applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1227-1235, Mar. 2018.
doi:10.1109/TAP.2018.2797534

12. Dai, L. H., C. Tan, and Y. J. Zhou, "Ultrawideband low-profile and miniaturized spoof plasmonic Vivaldi antenna for base station," Appl. Sci., Vol. 10, 2429, 2020.
doi:10.3390/app10072429

13. Dixit, A. S. and S. Kumar, "A miniaturized antipodal Vivaldi antenna for 5G communication applications," 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) , 800-803, Noida, India, 2020.

14. Dixit, A. S. and S. Kumar, "The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G communication applications," Microw. Opt. Technol. Lett., Vol. 62, 2365-2374, 2020.
doi:10.1002/mop.32335

15. Bhattacharjee, A., A. Bhawal, A. Karmakar, and A. Saha, "Design of an antipodal Vivaldi antenna with fractal-shaped dielectric slab for enhanced radiation characteristics," Microw. Opt. Technol. Lett., Vol. 62, 2066-2074, 2020.
doi:10.1002/mop.32274

16. Muzaffar, K., M. I. Magray, G. S. Karthikeya, and S. K. Koul, "High gain broadband Vivaldi antenna for 5G applications," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 496-497, Granada, Spain, 2019.
doi:10.1109/ICEAA.2019.8878970

17. Kota, K. and L. Shafai, "Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna," Electronics Letters, Vol. 47, No. 5, 303-304, Mar. 3, 2011.
doi:10.1049/el.2010.7579


© Copyright 2010 EMW Publishing. All Rights Reserved