Vol. 95
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-22
Average BER Analysis of Free-Space Optical Communications with Adaptive Threshold Technique Over Exponentiated Weibull Distribution
By
Progress In Electromagnetics Research Letters, Vol. 95, 91-97, 2021
Abstract
Average bit error rate (BER) performance of on-off keying (OOK) modulation in a free space optical (FSO) system, which is based on adaptive threshold technique under atmospheric turbulence described by exponentiated Weibull (EW) distribution, is studied and compared with that of using fixed threshold technique. In order to solve the adaptive threshold, the equation is simplified by using the generalized Gauss-Laguerre polynomial function, which significantly improves the operational efficiency. The simulation results show that the adaptive threshold varies with the average transmitted power under different noise variances, receiving aperture sizes and turbulence conditions. Compared with the fixed threshold technique, the adaptive threshold technique can greatly improve the BER performance of FSO communication system.
Citation
Li Zhang, Jingyuan Wang, Liu Huang, Han Zhang, and Ning Xu, "Average BER Analysis of Free-Space Optical Communications with Adaptive Threshold Technique Over Exponentiated Weibull Distribution," Progress In Electromagnetics Research Letters, Vol. 95, 91-97, 2021.
doi:10.2528/PIERL20102901
References

1. Nouri, H. and M. Uysal, "Experimental investigation on the effect of wavelength on aperture averaging in FSO communications," Opt. Lett., Vol. 45, No. 11, 3063-3066, 2020.
doi:10.1364/OL.389808

2. Yi, X., C. Shen, P. Yue, Y. M. Wang, Q. Q. Ao, and P. Zhao, "Performance analysis for a mixed RF and multihop FSO communication system in 5G C-RAN," J. Opt. Commun. Netw., Vol. 11, No. 8, 452-464, 2019.
doi:10.1364/JOCN.11.000452

3. Vitasek, J., J. Latal, S. Hejduk, J. Bocheza, P. Koudelka, J. Skapa, P. Siska, and V. Vasinek, "Atmospheric turbulences in free space optics channel," IEEE TSP, 104-107, 2011.

4. Vitasek, J., E. Leitgeb, T. David, J. Latal, and S. Hejduk, "Misalignment loss of free space optic link," ICTON , 2014.

5. Han, L.Q. and Y. H. You, "Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors," Acta Optica Sinica, Vol. 34, No. 11, 82-87, 2014.

6. Yi, X., Z. J. Liu, and P. Yue, "Average BER of free-space optical systems in turbulent atmosphere with exponentiated Weibull distribution," Opt. Lett., Vol. 37, No. 24, 5142-5144, 2012.
doi:10.1364/OL.37.005142

7. Yi, X. and M. W. Yao, "Free-space communications over exponentiated Weibull turbulence channels with nonzero boresight pointing errors," Opt. Express, Vol. 23, No. 3, 2904-2917, 2015.
doi:10.1364/OE.23.002904

8. Wang, P., L. Zhang, L. X. Guo, F. Huang, T. Shang, R. R. Wang, and Y. T. Yang, "Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels," Opt. Express, Vol. 22, No. 17, 20828-20841, 2014.
doi:10.1364/OE.22.020828

9. Sharma, P., K., A. Bansal, P. Garg, T. A. Tsiftsis, and R. Barrios, "Performance of FSO links under exponentiated Weibull turbulence fading with misalignment errors," IEEE ICC, 5110-5114, 2015.

10. Anbarasi, K., C. Hemanth, and R. G. Sangeetha, "A review on channel models in free space optical communication systems," Opt. Laser Technol., Vol. 97, 161-171, 2017.
doi:10.1016/j.optlastec.2017.06.018

11. Zhao, J., S. H. Zhao, W. H. Zhao, Y. J. Li, Y. Liu, and X. Li, "Average capacity of airborne optical links over exponentiated Weibull atmospheric turbulence channels," Opt. Quant. Electron., Vol. 49, No. 3, 104, 2017.
doi:10.1007/s11082-017-0927-5

12. Fu, H., H., P. Wang, T. Liu, T. Cao, L. X. Guo, and J. Qin, "Performance analysis of a PPMFSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging," Appl. Opt., Vol. 56, No. 23, 6432-6439, 2017.
doi:10.1364/AO.56.006432

13. Balaji, K. A. and K. Prabu, "Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors," Opt. Commun. , Vol. 410, 643-651, 2018.
doi:10.1016/j.optcom.2017.11.006

14. Li, K. N., B. Lin, and J. Ma, "Bit-error rate investigation of satellite-to-ground downlink optical communication employing spatial diversity and modulation techniques," Opt. Commun. , Vol. 442, 123-131, 2019.
doi:10.1016/j.optcom.2019.03.012

15. Wu, Y., H. P. Mei, C. M. Dai, F. M. Zhao, and H. L. Wei, "Design and analysis of performance of FSO communication system based on partially coherent beams," Opt. Commun., Vol. 472, 126041, 2020.
doi:10.1016/j.optcom.2020.126041

16. Popoola, W. O., Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, and S. Ga, "Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel," IET Optoelectron., Vol. 2, No. 1, 16-23, 2008.
doi:10.1049/iet-opt:20070030

17. Geng, D. X., P. F. Du, W. Wang, G. Gao, T. Wang, and M. L. Gong, "Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere," Opt. Lett., Vol. 39, No. 13, 3950-3953, 2014.
doi:10.1364/OL.39.003950

18. Li, X., Y., X. H. Zhao, and P. Zhang, "Bit error rate analysis for modulating Retro-Reflctor free space optical communications with adaptive threshold over correlated gamma gamma fading channels," IEEE Commun. Lett. , Vol. 23, No. 12, 2275-2278, 2019.
doi:10.1109/LCOMM.2019.2943868

19. Barrios, R. and F. Dios, "Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves," Opt. Express, Vol. 20, No. 12, 13055-13064, 2012.
doi:10.1364/OE.20.013055

20. Barrios, R. and F. Dios, "Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence," Opt. Laser Technol., Vol. 45, 13-20, 2013.
doi:10.1016/j.optlastec.2012.08.004

21. Mudholkar, G. S. and D. K. Srivastava, "Exponentiated Weibull family for analyzing bathtub failure-rate data," IEEE Trans. Reliab., Vol. 42, No. 2, 299-302, 1993.
doi:10.1109/24.229504

22. Press, W. H., S. A. Teukolsky, W. A. Vetterling, and B. P. Flannery, Numerical Recipies in C: The Art of Scientific Computing, Cambridge Univ., Cambridge, 1992.