Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-05-10
Susceptibility of Civilian UAV to Wideband High Power Electromagnetic Pulses
By
Progress In Electromagnetics Research Letters, Vol. 104, 15-25, 2022
Abstract
As unmanned aerial vehicle (UAV) is widely used in many civilian fields the wideband (WB) high power electromagnetic radiation devices development, whether the WB radiation would influence the civilian UAV to fulfil its tasks needs to be analyzed. Therefore, the radiated susceptibility of three models of DJI UAVs is studied in the paper. A decimetric wave oscillator with the power of over 500 MW was introduced as the radiation source. In experiment, adjusting the distance between radiation antenna and UAVs to change the electric field and the testing antenna was employed to measure the electric field on line. The three models of UAVs can be shot down by the electric field of 10 kV/m, 20 kV/m and 30 kV/m, respectively. Besides, as electric field reached up to over 35 kV/m, the rotor motor, electric control system and inertial measurement unit (IMU) in Mavic Air and Mavic Air 2 were easier to burn down. Except that, the energy accumulation effect has been proved in the experiment. In conclusion, the UAVs should fulfill tasks in the WB electromagnetic environment whose electric field is much less than 10 kV/m, and some shielding methods are needed to make UAV survive.
Citation
Chaochao Yang, Jin Meng, and Haitao Wang, "Susceptibility of Civilian UAV to Wideband High Power Electromagnetic Pulses," Progress In Electromagnetics Research Letters, Vol. 104, 15-25, 2022.
doi:10.2528/PIERL22032801
References

1. Sun, S. Q. and J. Ma, "History and reality: UAV development process, current situation and challenges," Aerodynamic Missile Journal, Vol. 7, No. 1, 2005.

2. Tsach, S., A. Peled, D. Penn, B. Keshales, and R. Guedj, "Development trends for next generation of UAV systems," AIAA Infotech@Aerospace 2007 Conference and Exhibit, 2762-2775, California, USA, 2007.

3. Bunting, C. and V. Rajamani, "An overview of UAS standards development," Proc. 2018 IEEE Int. Symp. Electromagnetic Compatibility, Chiyoda, Tokoyo, May 12-16, 2014.

4. Johns, D. P., "Electromagnetic analysis of installed antenna performance on a UAV and assessment of co-site interference," Proc. 2018 IEEE Int. Symp. Electromagnetic Compatibility, Chiyoda, Tokoyo, May 12-16, 2014.

5. Electromagnetic compatibility (EMC) - Part 1-5: General - High power electromagnetic (HPEM) effects on civil systems, IEC Standard 61000-1-5, 2004.

6. Electromagnetic compatibility (EMC) - Part 2: Environment - Section 9: Description of HEMP environment - Radiated disturbance. Basic EMC publication, IEC Standard 61000-2-9, 2005.

7. Bäckström, M. G. and K. G. Lövstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Trans. Electromagn. Compat., Vol. 46, 396-403, Aug. 2004.
doi:10.1109/TEMC.2004.831814

8. Mansson, D., R. Thottappillil, T. Nilsson, O. Lorén, and M. Bäckström, "Susceptibility of civilian GPS receivers to electromagnetic radiation," IEEE Trans. Electromagn. Compat., Vol. 50, 434-437, May 2008.
doi:10.1109/TEMC.2008.921015

9. Nitsch, D., M. Camp, F. Sabath, J. L. Ter Haseborg, and H. Garbe, "Susceptibility of some electronic equipment to HPEM threats," IEEE Trans. Electromagn. Compat., Vol. 46, 380-389, Aug. 2004.
doi:10.1109/TEMC.2004.831842

10. Bäckström, M., J. Lorén, G. Eriksson, and H.-J. Asander, "Microwave coupling into a generic object. Properties of measured angular receiving pattern and its significance for testing," Proc. 2001 IEEE Int. Symp. Electromagnetic Compatibility, Montreal, QC, Canada, Aug. 13-17, 2001.

11. Bäckström, M., T. Martin, and J. Lorén, "Analytical model for bounding estimates of shielding effectiveness of complex resonant cavities," Proc. 2003 IEEE Int. Symp. Electromagnetic Compatibility, Istanbul, Turkey, May 11-16, 2003.

12. Mansson, D., T. Nilsson, R. Thottappillil, and M. Bäckström, "Susceptibility of GPS receivers and wireless cameras to a single radiated UWB pulse," EMC Eur. Conf., Barcelona, Spain, 2006.

13. Hoad, R., N. J. Carter, D. Herke, and S. P.Watkins, "Trends in EM susceptibility of IT equipment," IEEE Trans. Electromagn. Compat., Vol. 46, 390-395, Aug. 2004.
doi:10.1109/TEMC.2004.831815

14. Chen, Y. Z., D. X. Zhang, E. W. Cheng, and X. J. Wang, "Investigation on susceptibility of UAV to radiated IEMI," Proc. 2018 IEEE Int. Symp. Electromagnetic Compatibility, Singapore, Singapore, May 14-18, 2018.

15. Hong, K. D. and S. W. Braidwood, "Resonant antenna-source system for generation of high-power wideband pulses," IEEE Trans. Plasma Sci., Vol. 30, No. 5, 1705-1711, 2002.
doi:10.1109/TPS.2002.806637

16. Ryu, J., D. Yim, and J. Lee, "Analysis and design of switched transmission line circuits for high-power wide-band radiation," Journal-Korean Physical Society, Vol. 59, No. 61, 3567, 2011.
doi:10.3938/jkps.59.3567

17. Giri, D. V., F. M. Tesche, M. D. Abdalla, et al. "Switched oscillators and their integration into helical antennas," IEEE Transactions on Plasma Science, Vol. 38, No. 6, 1411-1426, 2010.
doi:10.1109/TPS.2010.2047657

18. Qiao, Z. J., X. C. Pan, and Y. He, "Damage of high power electromagnetic pulse to unmanned aerial vehicles," High Power Laser and Particle Beams, Vol. 29, No. 11, 113202, 2017.

19. Zhang, D. X., Y. Z. Chen, X. Z, et al. "Investigation on effects of HPM pulse on UAV's datalink," IEEE Trans. Electromagn. Compat., Vol. 62, No. 3, 829-839, 2020.
doi:10.1109/TEMC.2019.2915285

20. Dobykin, V. D. and V. V. Kharchenko, "Electromagnetic-pulse functional damage of semiconductor devices modeled using temperature gradients as boundary conditions," Journal of Communications Technology and Electronics, Vol. 51, No. 2, 231-239, 2006.
doi:10.1134/S106422690602015X

21. Dobykin, V. D., "Development of the theory for thermal damage of semiconductor structures by high-power electromagnetic radiation," Journal of Communications Technology and Electronics, Vol. 53, No. 1, 100-103, 2008.
doi:10.1134/S1064226908010129