Vol. 110
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-04-26
Isolation and Gain Improvement of Multiple Input Multiple Output Antenna Using Frequency Selective Surfaces
By
Progress In Electromagnetics Research Letters, Vol. 110, 63-71, 2023
Abstract
This letter addresses a new approach to improve the gain and isolation of a multiple input multiple output (MIMO) antenna. A C-shaped printed antenna with both ends terminated by a small rectangular section is designed as the basic antenna element for a 2 element MIMO antenna of size 0.8λ×0.67λ×0.04λ (λ, corresponding to lowest operating frequency) which operates over the X band with peak gain of 3 dBi. By introducing a double layered frequency selective surface (FSS) of unit cell dimension 0.2λ×0.2λ×0.0375λ between the two antenna elements as an isolation wall and additionally by placing a 5×3 array of FSS geometry as a reflector below the antenna, the isolation and gain of the two element MIMO antenna are improved by 37 dB and 3 dBi, respectively. The proposed FSS loaded MIMO antenna provides very high isolation about -51 dB (measured) and a very low envelope correlation coefficient (ECC) of 0.000177282 (simulated) using far field approach and 0.000000033414 (calculated measured) using scattering (S) parameter approach. Further MIMO parameters like diversity gain (DG), total active reflection coefficient (TARC), mean effective gain (MEG) and channel capacity loss (CCL) have been evaluated. The radiation pattern is unidirectional in nature with a peak gain about 6 dBi. The letter also presents detailed design guidelines for the proposed FSS loaded MIMO antenna along with their verifications for Ku and K bands. The proposed structure can also be scaled up to a 4 element MIMO antenna.
Citation
Anett Antony, and Bidisha Dasgupta, "Isolation and Gain Improvement of Multiple Input Multiple Output Antenna Using Frequency Selective Surfaces," Progress In Electromagnetics Research Letters, Vol. 110, 63-71, 2023.
doi:10.2528/PIERL23031504
References

1. Das, G., A. Sharma, R. K. Gangwar, and M. S. Sharawi, "Performance improvement of multi-band MIMO dielectric resonator antenna system with a partially reflecting surface," IEEE Anten. Wire. Propag. Lett., Vol. 18, No. 10, 2105-2109, Oct. 2019.
doi:10.1109/LAWP.2019.2938004

2. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, Sept. 2020.
doi:10.1109/ACCESS.2020.3020952

3. Si, L., H. Jiang, X. Lv, and J. Ding, "Broadband extremely close-spaced 5G MIMO antenna with mutual coupling reduction using metamaterial-inspired superstrate," Optics Exp., Vol. 27, No. 3, 3472-3482, Feb. 2019.
doi:10.1364/OE.27.003472

4. Karimian, R., A. Kesavan, M. Nedil, and T. A. Denidni, "Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective surface wall," IEEE Anten. Wire. Propag. Lett., Vol. 16, 373-376, Jun. 2017.
doi:10.1109/LAWP.2016.2578179

5. Garg, P. and P. Jain, "Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band," IEEE Trans. on Circuits Systems II: Express Briefs, Vol. 67, No. 4, 675-679, Apr. 2020.
doi:10.1109/TCSII.2019.2925148

6. Anudeep, B., K. Krishnamoorthy, and P. H. Rao, "Low-profile, wideband dual-polarized 1 × 2 MIMO antenna with FSS decoupling technique," Int. J. Microw. Wire. Techno., Vol. 14, No. 5, 634-640, Jun. 2022.
doi:10.1017/S1759078721000805

7. Mondal, R., P. S. Reddy, D. C. Sarkar, and P. P. Sarkar, "Investigation on MIMO antenna for very low ECC and isolation characteristics using FSS and metal-wall," AEU-Int. J. Electron. Comm., Vol. 135, 1-9, Jun. 2021.

8. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, New York, 2000.
doi:10.1002/0471723770

9. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "A simple frequency selective surface structure for performance improvement of ultra-wideband antenna in frequency and time domains," Inter. J. RF and Microw. Computer-Aided Engg., Vol. 31, No. 11, 1-13, Nov. 2021.

10. Ansys High Frequency Structural Simulator, (HFSS), , Version 16.2.

11. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, London, 2002.

12. Mishra, M., S. Chaudhuri, R. S. Kshetrimayum, A. Alphones, and K. P. Esselle, "Space efficient meta-grid lines for mutual coupling reduction in two-port planar monopole and DRA array," IEEE Access, Vol. 10, 49829-49838, Jan. 2022.
doi:10.1109/ACCESS.2022.3146941