BACKWARD TAMM STATES IN 1D SINGLE-NEGATIVE METAMATERIAL PHOTONIC CRYSTALS

A. Namdar

Physics Department
Azarbaijan University of Tarbiat Moallem
Tabriz, Iran

S. Roshan Entezar, H. Rahimi, and H. Tajalli

Physics Faculty
University of Tabriz
Tabriz, Iran

Abstract—Existence of backward electromagnetic surface waves at an interface separating a semi-infinite uniform left-handed metamaterial and a 1D photonic crystal composed of alternating layers of two kinds of single-negative (ε-negative and μ-negative) metamaterial is theoretically investigated. Dispersion characteristics of surface states are analyzed for two different cases of ENG-MNG and MNG-ENG layered periodic structures. It was demonstrated that in the presence of metamaterial, surface waves are sensitive to light polarization and there exist only backward TM-polarized (or TE-polarized) surface Tamm states depending on the ratio of the thicknesses of two periodic stacking layers.

1. INTRODUCTION

Photonic crystals (PCs) attracted intensive studies in the last decade due to their unique electromagnetic properties and potential applications. It has been proven that photonic band gaps (PBGs) could be formed as the result of the interference of Bragg scattering in a periodical dielectric structure. In the conventional PCs (with positive indices), PBGs are highly sensitive to the lattice constant, incident angle and polarization (transverse electric (TE) and transverse magnetic (TM)) of the incident light. The properties of PCs are also
affected by disorder, randomness and fabrication tolerances \cite{1}. So, we need some special type of PBGs coming from the mechanisms beyond the Bragg scattering which would be immune to the random thickness error in the fabrication procedure and insensitive to the scale length change, angle of incidence and polarization.

One such attempt is to realize PBG in metamaterials. The metamaterials include double-negative (DNG) materials and single-negative (SNG) materials. DNG materials are artificial composites with both permittivity (ϵ) and permeability (μ) simultaneously negative and were first theoretically investigated by Veselago in 1968 \cite{2–7}. DNG materials exhibit many unusual physical properties different from the conventional right-handed materials. In addition to DNG materials, we can also have SNG materials in which only one of the two material parameters ϵ and μ is negative. The SNG materials consist of ϵ-negative (ENG) materials with $\epsilon < 0$ but $\mu > 0$ and μ-negative (MNG) materials with $\mu < 0$ but $\epsilon > 0$ \cite{8, 9}. It is well-known that the electromagnetic wave cannot propagate in ENG or MNG media. However, when ENG and MNG slab are paired in a conjugate manner, some unusual features are exhibited. Alù and Engheta have given the condition of conjugate matching and shown that such a combination can provide the characteristics of resonance, complete tunneling and transparency, using the equivalent TL modes \cite{10}. Furthermore, the 1D PCs composed of alternate SNG materials can present a new type of PBGs with zero effective phase (denoted as zero-φ_{eff} gap) that is distinct from the Bragg gaps. Such a zero-φ_{eff} gap is surrounded by pseudo-propagation modes which are originated from the interaction of forward and backward evanescent waves in the single-negative frequency regime. Zero-φ_{eff} gap is an omnidirectional gap that is insensitive to the incident angles and polarizations of light. Furthermore, such an omnidirectional gap is invariant with the change of scale length and insensitive to disorder \cite{8}.

Surface waves (SWs) have been recognized and studied as a fundamental excitation at the interface between two suitably active media. SWs are typically nonradiative modes propagating along an interface with amplitudes that are evanescent in each bounding medium \cite{11–18}. SWs have become a familiar physical concept in the optics and physics community thanks to the long-history investigation on surface plasmons, which are a kind of localized SWs that are typically excited in metal films. Furthermore, SWs have recently been proposed as a way to efficiently inject light into a PC waveguide, or to extract a focused beam from a channel. In periodic systems, the modes localized at the surfaces are known as Tamm states, first found as localized electronic states at the edge of a truncated periodic
potential [19]. SWs generated in PCs have potential to become alternatives to the surface plasmons. They have some advantages. First, SWs supported by PCs can exist virtually in any optical frequency regime due to the scaling nature of dielectric PCs. Second, the low dielectric loss in the structures can lead to sharp resonant coupling between the incoming light and SWs [20].

Several devices have been proposed recently based on the existence of SWs such as optical modulators and sensors [21] and semiconductor laser [22]. Some applications have been also found for optical communications of the surface modes in PCs for narrow bandpass filters [23].

In this paper, we theoretically study SWs that can be excited at the interfaces between a semi-infinite uniform DNG medium and a semi-infinite 1D PC containing two types of single-negative materials (ENG-MNG and MNG-ENG). We show the excitation of special type of transverse structure for TM-polarized surface waves with a backward energy flow for both ENG-MNG and MNG-ENG periodic structures.

Our paper is organized as follows. In Section 2, we present the theoretical model and employ the transfer matrix method (TMM) to calculate SWs at an interface separating a semi-infinite uniform DNG medium and a semi-infinite 1D PC containing SNG materials. Then, in Section 3, the discussion of the dispersion characteristic of the SWs on the plane of the angular frequency versus the propagation constant and existence regions for the backward surface Tamm states are illustrated. Finally, conclusion is given in Section 4.

2. MODEL AND NUMERICAL METHODS

Let us consider the geometry of the structure, as shown in the Fig. 1. We consider a semi-infinite 1D PC consisting of alternating layers of ENG and MNG material. The permittivity ε and permeability μ of the SNG layers have the following forms [8, 9],

$$
\varepsilon_1 = 1 - \frac{\omega_{ep}^2}{\omega^2}, \quad \mu_1 = 3, \quad (1)
$$
in ENG materials and

$$
\varepsilon_2 = 3, \quad \mu_2 = 1 - \frac{\omega_{mp}^2}{\omega^2}, \quad (2)
$$
in MNG materials, where ω_{mp} and ω_{ep} are magnetic plasma frequency and electronic plasma frequency, respectively. Such dispersion for the isotropic SNG materials can be realized in a composite made of periodic LC loaded transmission lines [24]. In the Eqs. (1) and (2), ω is the
Figure 1. Geometry of the problem. In the our calculations we take the following values: $\epsilon_0 = -1$, and $\mu_0 = -1$; in ENG-MNG structure: $d_1 = 6\,\text{mm}, d_2 = 8\,\text{mm}, \epsilon_1 = 1 - \frac{\omega_{ep}^2}{\omega_0^2}, \mu_1 = 3, \epsilon_2 = 3, \mu_2 = 1 - \frac{\omega_{mp}^2}{\omega_0^2}$, and $\omega_{ep} = \omega_{mp} = 10\,\text{GHz}$; in MNG-ENG structure the position of ENG and MNG layers in ENG-MNG structure is exchanged with the same geometry and physical parameters.

angular frequency measured in gigahertz. The thicknesses of ENG and MNG slabs are assumed to be d_1 and d_2, respectively. As shown in Fig. 1, the PC is capped by a layer of the same SNG material with thickness d_c. For the convenience of presentation, we imagine that this cap layer consists of two sublayers with lengths d_s and d_t respectively, where $(d_s + d_t = d_c)$. Then the periodic array that forms the 1D PC consists of cells, each made of three uniform layers of widths d_t, d_2, and $d_1 - d_t$.

We consider the propagation of TM-polarized waves described by one component of the magnetic field $H = H_y(z)$ and governed by a scalar Helmholtz-type equation. We look for stationary solutions propagating along the interface with the characteristic dependence $\sim \exp[-i\omega(t - \beta x/c)]$, where β is the normalized wave number component along the interface, and c is the speed of light. Surface modes correspond to localized solutions with the field decaying from the interface in both directions. In the left-side homogeneous medium (semi-infinite LHM) $z < d_s$ the fields are decaying provided $\beta > \epsilon_0\mu_0$. In the right-side periodic structure, the waves are the Bloch modes, $E(z) = \psi(z)\exp(iK_B z)$, where K_B is the Bloch wave number, and $\psi(z)$ is the Bloch function which is periodic with the period of the photonic structure. In the periodic structure the waves will be decaying provided that K_B is complex, and this condition defines the spectral gaps in a finite PC. For the calculation of the Bloch modes, we use the well-known transfer
matrix method [1]. One can find the elements of transfer matrix, \(M \), for TM-polarized waves as:

\[
M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},
\]

(4)

\[
A = e^{k_1d_1} \left[\cosh(k_2d_2) - \frac{1}{2} \left(\frac{q_1}{q_2} + \frac{q_2}{q_1} \right) \sinh(k_2d_2) \right],
\]

(5)

\[
B = \frac{1}{2} e^{k_1(d_1-2d_2)} \left(\frac{q_1}{q_2} + \frac{q_2}{q_1} \right) \sinh(k_2d_2),
\]

(6)

\[
C = -\frac{1}{2} e^{-k_1(d_1-2d_2)} \left(\frac{q_1}{q_2} + \frac{q_2}{q_1} \right) \sinh(k_2d_2),
\]

(7)

\[
D = e^{-k_1d_1} \left[\cosh(k_2d_2) + \frac{1}{2} \left(\frac{q_1}{q_2} + \frac{q_2}{q_1} \right) \sinh(k_2d_2) \right],
\]

(8)

where \(k_i = k\sqrt{\beta^2 - n_i^2} \), \(n_i = \sqrt{\varepsilon_i\mu_i}, i = 1, 2, q_1 = \frac{\varepsilon_2k_1}{\varepsilon_1k_2} \) and \(q_2 = \frac{\varepsilon_1k_2}{\varepsilon_2k_1} \).

We assume that the width of \(d_c \) is different from \(d_1 \) and \(d_2 \). Here, we investigate the effect of \(d_c \) on the surface states. We show that by adjusting \(d_c \), there is a possibility to control the dispersion properties of SWs. By using continuity conditions at the interface between left handed medium and periodic structure [11], we obtain the exact dispersion relation \(k(\beta) \) for SWs by solving

\[
\frac{q_0/\varepsilon_0}{k_1/\varepsilon_1} = -i \frac{\lambda - A + \tilde{B}}{\lambda + A + \tilde{B}},
\]

(9)

where

\[
\lambda = \frac{(A + D)}{2} \pm \sqrt{\left(\frac{A + D}{2} \right)^2 - 1},
\]

(10)

\(q_0 = k\sqrt{\beta^2 - n_0^2} \) and \(\tilde{B} = e^{-2k_1d_s}B \). The parameter \(\lambda \) determines the band structure. Regions where \(|\lambda| < 1 \) corresponds to real \(K_B \) and thus to propagating Bloch waves. In regime where \(|\lambda| > 1 \), \(K_B \) has an imaginary part. Therefore, the Bloch wave is evanescent, and this regime corresponds to forbidden bands (or gaps) of the periodic structure. The band edges are those regimes where \(|\lambda| = 1 \).

3. RESULTS AND DISCUSSION

We analyze the dispersion properties of the surface Tamm states in the second SNG gap, so-called zero-\(\varphi_{eff} \) gap [12], on the plane of the angular frequency \(\omega \) versus the propagation constant \(\beta \) (see
Figure 2. Dispersion properties of the TM-polarized surface modes for (a) ENG-MNG and (b) MNG-ENG periodic structures. Unshaded regions show the zero-\(\varphi_{\text{eff}}\) spectral gap of the 1D PC containing SNG materials. Dotted, dashed, and solid curves show the dispersion of the surface modes for \(d_c = 0.2d_1\), \(0.8d_1\), and \(2d_1\), respectively. Points (1), and (2) correspond to the mode profiles presented in Figs. 3(a) and 3(b), respectively. The other parameters are the same as the Fig. 1.
Fig. 3, where we plotted the profiles of the mode (1) in the ENG-MNG structure and the mode (2) in MNG-ENG structure. Fig. 3 shows that in ENG-MNG arrangement the peak of SWs is located at the interface between the cap layer and photonic crystal. But in MNG-ENG arrangement, the peak of SWs is located at the interface between DNG material and cap layer.

Energy flow of surface Tamm states for ENG-MNG and MNG-ENG structure (see Fig. 1) has the same behavior as the negative

Figure 3. Examples of the backward TM surface modes. (a) ENG-MNG structure: $\omega = 4.6$ GHz, $\beta = 1.85$, and $d_c = 0.8d_1$. (b) MNG-ENG structure: $\omega = 4.562$ GHz, $\beta = 1.94$, and $d_c = 2d_1$. Modes (a), and (b) correspond to the points (1) and (2) in Fig. 2, respectively. The other parameters are the same as the Fig. 1.

Figure 4. Total energy flow of surface Tamm modes vs β in the (a) ENG-MNG and (b) MNG-ENG periodic structures for different d_c. Dotted, dashed, and solid curves show the energy flow of the surface modes for $d_c = 0.2d_1$, $0.8d_1$, and $2d_1$, respectively.
values. To demonstrate this, in Fig. 4, we plot total energy flow as a function of the wave number β. We see from Fig. 4 that all surface modes in ENG-MNG and MNG-ENG periodic structure have negative energy flow, thus they are backward for different values of cap layer thicknesses d_c.

Finally, in Fig. 5, we study the dependence of surface modes on the ratio of the thicknesses of two SNG layers (d_2/d_1) for (a) ENG-MNG (b) MNG-ENG structures. The dotted and solid lines correspond to the surface modes with $d_c = 0.2d_1$ and $d_c = 1.5d_1$, respectively. Here, $\beta = 1.9$, and the other parameters are the same as those in Fig. 1. The unshaded regions are omnidirectional zero-φ_{eff} PBG in which the existence of TM or TE surface modes are indicated. As one can see from Fig. 5, in ENG-MNG structure, TE-polarized SWs exist only for the relative thickness (d_2/d_1) less than one, and TM-polarized SWs exist only for the relative thickness more than one, while in the case of MNG-ENG structure TE-polarized SWs exist only for the relative thickness (d_2/d_1) more than one, and TM-polarized SWs exist only for the relative thickness less than one.

4. CONCLUSION

We have presented a theoretical study of TM-polarized (or TE-polarized) electromagnetic surface waves supported by an interface between a left-handed metamaterial and 1D PC containing alternative ENG-MNG or MNG-ENG layers. We have demonstrated that in the
presence of a LHM there are only backward TM-polarized (or TE-polarized) surface Tamm states. Also, we demonstrated that the occurrence of the TE- and TM-polarized surface waves depends on the ratio of the thicknesses of the SNG layers. When the ratio of two SNG layers is less than one (or more than one) in ENG-MNG structure we face the TE (TM) surface waves and in MNG-ENG structure we face the TM (TE) surface waves.

REFERENCES

10. Alu, A. and N. Engheta, “Pairing an epsilon-negative slab with a

23. Istrate, E. and E. Sargent, “Photonic crystal heterostructures and