ANALYTIC AND NUMERICALLY EFFICIENT SCATTERING EQUATIONS FOR AN INFINITELY FLANGED COAXIAL LINE

Y. H. Cho*

School of Information and Communication Engineering, Mokwon University, 21 Mokwon St., Seo-gu, Daejeon 302-729, Republic of Korea

Abstract—An infinitely flanged coaxial line is analytically solved with the mode-matching technique and Green’s function to propose a precise yet fast-convergent scattering solution for complex permittivity measurement. Based on virtual current cancelation, we formulate the open half-space fields in terms of coaxial modes and related Green’s functions and thus obtain the simultaneous equations with rapidly convergent integrals. Numerical computations were performed in terms of reflection coefficients and radiation patterns.

1. INTRODUCTION

A flanged coaxial line has been extensively studied to obtain material characteristics for biological substances [1], non-destructive test [2], resonant dielectric absorption [3], permittivity determination [4], moisture layers [5], agricultural products [6], IC packages [7], and concrete [8]. Even though the applications for material measurements are somewhat different, the basic idea is very similar one another [1–8]. Measuring the reflection coefficients with a fixed probe is utilized to determine the complex permittivity of an unknown material. We usually perform iteration procedures to reduce errors between pre-obtained measurement results and simulations with various complex permittivity.

As a result, the analytic formulations of scattering phenomena for probe and material are very important to estimate material characteristics. To obtain precise scattering equations, a variety of
numerical methods have been proposed [9–16]. The Wiener-Hopf method and unilateral Fourier transform [9] were applied to a problem of radiation from a coaxial line with an infinite flange and thick inner conductor. A quasi-static analysis [10] was proposed to get an approximate closed-form solution. The Hankel transform and mode-matching technique [11–13] allow us to formulate the scattered fields in analytic representations. However, the radiation integrals in [11–13] have singularities and oscillating behaviors, thus indicating that the proposed integrals are complicated to deduce and inefficient for numerical computations. In [14, 15], the authors used versatile numerical algorithms such as the boundary integral equation [14] and the two-dimensional finite-difference frequency-domain method [15], respectively. Recently, by using the Sommerfeld identity similar to the Hankel transform, an approximate but efficient exponential series solution was given in [16] based on the matrix pencil method. The analytic method based on the eigenfunctions satisfying the edge condition was also used in [18, 19]. Even though the method in [18] is analytic, the radiation integrals in [18] still have several singular points which make numerical integrations difficult.

The aim of this work is to show an alternative method based on the mode-matching technique and Green’s function. The Green’s function approach combined with virtual current cancellation [17] and integral path deforming also yields a fast-convergent radiation integral that is free of singularity and very efficient for numerical integration. In the following Section, we extend the methodology proposed in [17] to the problem of a flanged coaxial line.

![Infinite flange](image-url)

Figure 1. Geometry of an infinitely flanged coaxial line.
2. FIELD REPRESENTATION AND ANALYSIS

Consider the TM\textsubscript{0}s mode propagates through a coaxial line shown in Figure 1 and is reflected at the end of a coaxial line (z = 0). Note that s represents the mode number of an incident wave. The coaxial line is truncated at z = 0 and connected to a perfectly conducting infinite flange at z = 0. Due to the geometric discontinuity at z = 0, the infinite number of guided waves are generated in region (I) (z \leq 0) and some incident power is transmitted into the free-space that is denoted as region (II) (z > 0). We select the time convention as e\(^{-i\omega t}\) which is suppressed throughout. The incident and reflected electric fields \(E^i_\rho\) are conveniently defined as

\[
E^i_\rho(\rho, z) = -\eta_1 \kappa_s C'_0(\kappa_s \rho) e^{i\xi m z},
\]

\[
E^r_\rho(\rho, z) = -\eta_1 \kappa_s C'_0(\kappa_s \rho) e^{-i\xi m z},
\]

where \(\rho = \sqrt{x^2 + y^2}\), \(\eta_1 = \sqrt{\mu_1/\epsilon_1}\), \(\xi_m = \sqrt{k_1^2 - \kappa_m^2}\), \(k_1 = \omega\sqrt{\mu_1\epsilon_1}\), \((\cdot)'\) denotes differentiation with respect to the argument,

\[
C_0(\kappa_m \rho) = \left\{ \begin{array}{ll}
J_0(\kappa_m \rho)N_0(\kappa_m b) - N_0(\kappa_m \rho)J_0(\kappa_m b) & (m \neq 0) \\
\frac{2}{\pi} \log \frac{b}{\rho} & (m = 0)
\end{array} \right.,
\]

\(J_0(\cdot)\) and \(N_0(\cdot)\) are the zeroth-order Bessel functions of the first and second kinds, respectively, \(\kappa_0 = 0\), and \(\kappa_m\) is determined by equating \(C_0(\kappa_m a) = 0\) \((m = 1, 2, \ldots)\). A coaxial function \(C_0(\kappa_m \rho)\) satisfies the Bessel’s differential equation as

\[
\left[\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{d}{d\rho} \right) + \kappa^2_m \right] C_0(\kappa_m \rho) = 0.
\]

When \(s = 0\), (1) denotes a TEM mode. The incident \(E^i_\rho\) field is scattered at the boundary at \(z = 0\). Based on the Fourier-Bessel series, the magnetic vector potential \(A^I_z\) in region (I) (z < 0) is formulated to represent the scattered fields as

\[
A^I_z(\rho, z) = \mu_1 \sum_{m=0}^{\infty} p_m C_0(\kappa_m \rho) e^{-i\xi_m z},
\]

where \(p_m\) are the unknown modal coefficients to be determined with simultaneous equations that will be shown in (20). The electric field in region (I) \(E^I_\rho(\rho, z)\) can be obtained with \(E^I_\rho(\rho, z) = \frac{i}{\omega \mu_1 \epsilon_1} \frac{\partial^2}{\partial z^2 \partial \rho} A^I_z(\rho, z)\). In terms of the Sturm-Liouville theory, the eigenfunctions \(C_0(\kappa_m \rho)\) are orthogonal each other and constitute a complete basis set for region (I). Therefore, we can consider \(p_m\) the expansion coefficients for the Fourier-Bessel series.
Figure 2. Artificial geometry for virtual current cancellation.

The magnetic vector potential \(A_{z}^{II} \) in open half-space region \((z > 0)\) can be obtained based on virtual current cancelation. Even though virtual currents induced on a virtual coaxial line at \(\rho = a, b \) and \(z > 0 \) illustrated in Figure 2 are artificial, this concept facilitates the simplified yet precise field representations in open region. It should be noted that we assume the virtual coaxial line at \(\rho = a, b \) and \(z > 0 \) to be made of PEC (Perfect Electric Conductor). Since a virtual coaxial line is introduced in open region \((z > 0)\), we can easily match the potential \(E_m(\rho, z) \ (z > 0) \) for the virtual coaxial line and \(A_{z}^{I}(\rho, z) \ (z < 0) \) by a standard mode-matching technique. In the next step, the component \(R_{m}^{E}(\rho, z) \) is generated to remove the inevitable discontinuities at \(\rho = a \) and \(b \) caused by a virtual coaxial line. By this basic concept of virtual current cancelation, we can formulate the magnetic vector potential \(A_{z}^{II} \) for open half-space region \((z > 0)\) as

\[
A_{z}^{II}(\rho, z) = \mu_2 \sum_{m=0}^{\infty} r_m \left[E_m(\rho, z) + R_{m}^{E}(\rho, z) \right],
\]

where \(r_m \) are the unknown modal coefficients for region \((II)\),

\[
E_m(\rho, z) = C_0(\kappa_m \rho) \frac{e^{i\eta_m z}}{i\eta_m},
\]

\(\eta_m = \sqrt{k_2^2 - \kappa_m^2} \), and \(k_2 = \omega\sqrt{\mu_2 \epsilon_2} \). In order to determine the coefficients \(r_m \), the normal electric field continuity \(\partial E_z/\partial z - \rho_e/\epsilon \) at \(z = 0 \) should be utilized. The \(z \)-directed electric field \(E_z \) is represented
as \(E_z(\rho, z) = \frac{i}{\omega \mu} (\frac{\partial^2}{\partial z^2} + k^2) A_z(\rho, z) \). Enforcing the normal electric field continuity at \(z = 0 \), we get

\[
\tau_m = -\frac{\epsilon_2}{\epsilon_1} i \xi_m p_m.
\]

(8)

where we assume \(\frac{\partial}{\partial z} R_m^E(\rho, z) |_{z=0} = 0 \). Note that the condition \(\frac{\partial}{\partial z} R_m^E(\rho, z) |_{z=0} = 0 \) will be verified later.

In terms of the Green’s function relation, the component \(R_m^E(\rho, z) \) to cancel out \(E_m(\rho, z) \) is formulated as

\[
R_m^E(\rho, z) = -\int \frac{\partial}{\partial n'} \left[E_m(\vec{r}') \right] G_A^{zz}(\vec{r}, \vec{r}') d\vec{r}',
\]

(9)

where \(n \) is an outward normal direction denoted in Figure 2 and \(G_A^{zz}(\vec{r}, \vec{r}') \) is the \(z \)-directional Green’s function excited by the \(z \)-directed source in terms of a magnetic vector potential \(A \). Substituting (7) into (9) yields

\[
R_m^E(\rho, z) = -\frac{2i}{\pi} \int_0^\infty \frac{2v}{\kappa^2 - \kappa_m^2} \left[J_0(\kappa_m b) f_E(\rho, a; \kappa) - f_E(\rho, b; \kappa) \right] dv.
\]

(10)

where \(\kappa = \sqrt{k^2 - \zeta^2} \) and

\[
f_E(\rho, \rho'; \kappa) = \begin{cases}
J_0(\kappa \rho') H_0^{(1)}(\kappa \rho) & \text{for } \rho > \rho' \\
J_0(\kappa \rho) H_0^{(1)}(\kappa \rho') & \text{for } \rho < \rho'
\end{cases}
\]

(11)

Since (10) has singular points at \(\kappa = \pm \kappa_m \), (10) is not efficient for numerical computations. As such, we use the integral path deformation proposed in [17]. According to [17], we replace \(\zeta \) with \(\zeta = k^2 v (v - i) \). Then,

\[
R_m^E(\rho, z) = -\frac{2k_2 i}{\pi} \int_0^\infty \left(\frac{2v - i}{\kappa^2 - \kappa_m^2} \frac{\cos(\zeta z)}{\kappa^2 - \kappa_m^2} \right)
\]

\[
\times \left[J_0(\kappa_m b) f_E(\rho, a; \kappa) - f_E(\rho, b; \kappa) \right] dv.
\]

(12)

Considering (12), we can prove \(\frac{\partial}{\partial z} R_m^E(\rho, z) |_{z=0} = 0 \). Although the integrand in (12) is oscillating when \(v \gg 1 \) and \(z \gg 1 \), the integrand does not have any singularities. Thus, we can integrate (12) very easily to get the magnetic vector potential \(A_z^{II} \) in (6) for the open region near \(z \approx 0 \).

Using the Green’s second integral identity, the magnetic vector potential \(A_z^{II}(\rho, z) \) in (6) is also simplified to a finite integral as

\[
E_m(\rho, z) + R_m^E(\rho, z) = -\int_a^b C_0(\kappa_m \rho') K_{\rho z}(\rho') \rho' d\rho' + \Delta_0(\rho, z),
\]

(13)
where \(r = \sqrt{\rho^2 + z^2}, \theta = \cos^{-1}(z/r) \),

\[
K_{\rho z}(\rho') = \int_0^{2\pi} \frac{e^{ikR_0}}{2\pi R_0} d\phi' = i \int_0^\infty f_E(\rho, \rho'; \kappa) \cos(\zeta z) d\zeta
\]

(14)

\[
R_0 = \sqrt{r^2 - 2\rho\rho' \cos \phi' + (\rho')^2}
\]

(15)

\[
\Delta_0(\rho, z) = \delta_{m0} \frac{i2k_2a}{\pi} \log \left(\frac{b}{a} \right)
\]

\[
\times \int_0^\infty \frac{(2v - i)}{\kappa^2} \cos(\zeta z) \frac{\partial}{\partial \rho} f_E(\rho, \rho'; \kappa) \bigg|_{\rho'=a} \, dv,
\]

(16)

and \(\delta_{ml} \) is the Kronecker delta. When we adopt the spherical coordinate system \((r, \theta, \phi)\) and \(r \to \infty \), the far-field for the magnetic vector potential \(A_{z}^{II}(\rho, z) \) in (6) is asymptotically given by

\[
A_{z}^{II}(r, \theta) \sim \mu_2 \frac{\epsilon_2}{\epsilon_1} \frac{ie^{ik_2r}}{r} \sum_{m=0}^\infty p_m \xi_m \left[F_0^{cx}(\kappa_m, k_2 \sin \theta) \right.
\]

\[
+ \delta_{m0} \frac{2a}{\pi} \log \left(\frac{b}{a} \right) \frac{J_1(k_2 \sin \theta)}{k_2 \sin \theta}
\],

(17)

where

\[
F_0^{cx}(\kappa_m, \kappa) = \frac{2}{\pi(\kappa_m^2 - \kappa^2)J_0(\kappa_m a)} \times \left[J_0(\kappa_m a)J_0(\kappa b) \right.
\]

\[
- J_0(\kappa a)J_0(\kappa_m b) + \kappa a J_1(\kappa a) \log \left(\frac{b}{a} \right) \delta_{m0} \right].
\]

(18)

Similarly, the \(E_\theta \) field in the far-field is represented as

\[
E_{\theta}^{II}(r, \theta) \sim \eta_2 \frac{\epsilon_2}{\epsilon_1} \frac{ie^{ik_2r}}{r} \sum_{m=0}^\infty p_m \xi_m \left[F_0^{cx}(\kappa_m, k_2 \sin \theta) \right.
\]

\[
+ \delta_{m0} \frac{2a}{\pi} \log \left(\frac{b}{a} \right) \frac{J_1(k_2 \sin \theta)}{k_2 \sin \theta}
\].

(19)

Differentiating (5) and (6) with respect to the \(\rho \)-axis and applying the \(H_\phi \) field continuity at \(z = 0 \) gives the final simultaneous equations for \(p_m \) as

\[
\sum_{m=0}^\infty p_m I_E(m, l) = s_{E,l},
\]

(20)

where

\[
I_E(m, l) = D_m \delta_{ml} + \frac{\epsilon_2}{\epsilon_1} i \xi_m \left[\frac{D_m}{i \eta_m} \delta_{ml} + I_{ml}^E \right]
\]

\[
s_{E,l} = -2D_s \delta_{sl}
\]

(21)

(22)
\[D_m = \frac{2}{\pi^2} \left[1 - \frac{J_0^2(\kappa_m b)}{J_0^2(\kappa_m a)} + 2 \log \left(\frac{b}{a} \right) \delta_{m0} \right] \]

\[I_{ml}^E = -\frac{2k_2\kappa l_i}{\pi} \int_0^\infty \frac{(2v - i)\kappa}{(\kappa^2 - \kappa_m^2)(\kappa^2 - \kappa_l^2)} \]

\[\times \left[\frac{J_0(\kappa_m b)}{J_0(\kappa_m a)} J_0(\kappa a) f_l^E(a; \kappa) - H_0^{(1)}(\kappa b) f_l^E(b; \kappa) \right] dv \]

\[f_l^E(a; \kappa) = \kappa b H_0^{(1)}(\kappa b) C_0'(\kappa l b) - \kappa a H_0^{(1)}(\kappa a) C_0'(\kappa l a) \]

\[f_l^E(b; \kappa) = \kappa b J_0(\kappa b) C_0'(\kappa l b) - \kappa a J_0(\kappa a) C_0'(\kappa l a). \]

3. NUMERICAL COMPUTATIONS

We solved the simultaneous equations given by (20) and compared with [2, 16]. Figure 3 illustrates the behaviors of reflection coefficients when a TEM mode \((s = 0)\) impinges on the flanged open end of a coaxial line. In this figure, \(M\) is the number of truncated modes. Our computational results based on (20) agree very well with [2, 16] when \(M \geq 2\). A dominant mode solution \((M = 1)\) is only valid for low frequency.

In Figure 4, we can observe the magnitude variations of the integrand for \(I_{ml}^E\) in (24). The radiation integral with deformed integral path \(I_{ml}^E\) does not have any singularity: this is desirable for numerical integration. Furthermore, the integrand shown in Figure 4 has fast-convergent characteristics when the integration variable \(v\) becomes

![Figure 3](image-url)

Figure 3. Behaviors of reflection coefficients \((\Gamma)\) with \(s = 0\) (TEM incidence), \(a = 1.4364\) [mm], \(b = 4.725\) [mm], \(\epsilon_1 = \epsilon_2 = 2.05\epsilon_0\), and \(\mu_1 = \mu_2 = \mu_0\). (a) Magnitude of \(\Gamma\). (b) Phase of \(\Gamma\).
large. Our computational experience indicates that the maximum value of v for numerical integration can be five to ten in order to obtain numerical convergence for most of cases.

Figure 5 shows the behaviors of radiation patterns of a flanged coaxial line. Contrary to the reflection characteristics in Figure 3, a dominant mode solution ($M = 1$) is almost the same as the higher-mode solutions ($M \geq 2$). In addition, the radiation pattern of a flanged coaxial line has peak antenna gain at $\theta = 90^\circ$ which is similar to a flanged monopole antenna. This indicates that the reflection characteristics are mainly determined near the open end and flange of a coaxial line.

4. CONCLUSIONS

Using the Green’s function and mode-matching technique, an analytic and numerically efficient analytic approach is proposed for an infinitely flanged coaxial line. The reflection behaviors of a flanged coaxial line were compared with other results and showed good agreements. The permittivity measurement and estimation with a flanged coaxial line can be more precisely performed with the proposed analytic solutions with fast-convergent radiation integrals.
REFERENCES

