PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 4 > pp. 33-46

A RECURRENCE TECHNIQUE FOR COMPUTING THE EFFECTIVE INDEXES OF THE GUIDED MODES OF COUPLED SINGLE-MODE WAVEGUIDES

By T. A. Ramadan

Full Article PDF (308 KB)

Abstract:
The recurrence dispersion equation of coupled single-mode waveguides is modified by eliminating redundant singularities from the dispersion function. A recurrence zero-bracketing (RZB) technique is proposed in which the zeros of the dispersion function at one recurrence step bracket those of the next recurrence step. Numerical examples verify the utility of the RZB technique in computing the roots of the dispersion equation of the TE and TM modes of both uniform and non-uniform arrays.

Citation:
T. A. Ramadan, "A Recurrence Technique for Computing the Effective Indexes of the Guided Modes of Coupled Single-Mode Waveguides," Progress In Electromagnetics Research M, Vol. 4, 33-46, 2008.
doi:10.2528/PIERM08063005

References:
1. Kaplan, A. and S. Ruschin, "Optical switching and power control in LiNbO3 coupled waveguide arrays," IEEE J. Quantum Electron., Vol. 37, 1562-1573, 2001.
doi:10.1109/3.970903

2. Lee, M.-H., Y. H. Min, S. Park, J. J. Ju, J. Y. Do, and S. K. Park, "Fully packages polymeric four arrayed 2×2 digital optical switch," Photon. Technol. Lett., Vol. 14, 615-617, 2002.
doi:10.1109/68.998702

3. Kawakita, Y., T. Saitoh, S. Shimotaya, and K. Shimomura, "A novel straight arrayed waveguide grating with linearly varying refractive-index distribution ," IEEE Photon. Technol. Lett., Vol. 16, 144-146, 2004.
doi:10.1109/LPT.2003.819366

4. Kawakita, Y., S. Shimotaya, A. Kawai, D. Machida, and K. Shimomura, "Wavelength demultiplexer using GaInAs-InP MQW-based variable refractive index arrayed waveguides fabricated by selective MOVPE," IEEE J. Select. Quantum. Electron., Vol. 11, 211-216, 2005.
doi:10.1109/JSTQE.2004.841472

5. Tangdiongga, E., Y. Liu, J. H. den Besten, M. van Geemert, T. van Dongen, J. J. M. Binsma, H. de Waardt, G. D. Khoe, M. K. Smit, and H. J. S. Dor, "Monolithically integrated 80-Gb/s AWG-based all-optical wavelength converter," IEEE Photon. Technol. Lett., Vol. 18, 1627-1629, 2006.
doi:10.1109/LPT.2006.878152

6. Choi, C.-G., S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, "Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process," IEEE Photon. Technol. Lett., Vol. 15, 825-827, 2003.
doi:10.1109/LPT.2003.811139

7. Olivero, M. and M. Svalgaard, "Fabrication of 2×8 power splitters in silica-on-silicon by direct UV writing technique," IEEE Photon. Technol. Lett., Vol. 18, 802-804, 2006.
doi:10.1109/LPT.2006.871694

8. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic, New York, 1991.

9. Chilwell, J. and I. Hodgkinson, "Thin-films field transfer matrix theory of planar multiplayer waveguides and reflection from prismloaded waveguides," J. Opt. Soc. Am. A, Vol. 1, 742-753, 1984.
doi:10.1364/JOSAA.1.000742

10. Walpita, L. M., "Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Am. A, Vol. 2, 595-602, 1985.
doi:10.1364/JOSAA.2.000595

11. Li, Y.-F. and J. W. Y. Lit, "General formulas for the guiding properties of a multiplayer slab waveguide," J. Opt. Soc. Am. A, Vol. 4, 671-677, 1987.
doi:10.1364/JOSAA.4.000671

12. Li, Y.-F. and J. W. Y. Lit, "Generalized dispersion properties of a multilayer dielectric planar waveguide," J. Opt. Soc. Am. A, Vol. 9, 121-129, 1992.
doi:10.1364/JOSAA.9.000121

13. Yeh, P., "Resonant tunneling of electromagnetic radiation in superlattice structures," J. Opt. Soc. Am. A, Vol. 2, 568-571, 1985.
doi:10.1364/JOSAA.2.000568

14. Chiang, K. S., "Coupled-zigzag-wave theory for guided waves in slab waveguide arrays," J. Lightwave Technol., Vol. 10, 1380-1387, 1992.
doi:10.1109/50.166780

15. Anemogiannis, E. and E. N. Glytsis, "Multilayer waveguides: Efficient numerical analysis of general structures," J. Lightwave Technol., Vol. 10, 1344-1351, 1992.
doi:10.1109/50.166774

16. Smith, R. E., S. N. Houde-Walter, and G. W. Forbes, "Mode determination of planar waveguides using the four-sheeted dispersion relation ," IEEE J. Quantum. Electron., Vol. 28, 1520-1526, 1992.
doi:10.1109/3.135305

17. Chen, C., P. Berini, D. Feng, and V. P. Tozolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides," Proc. SPIE, Vol. 3797, 676-686, July 1999.

18. Chen, C., P. Berini, D. Feng, S. Tanev, and V. P. Tozolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides," Opt. Express, Vol. 7, 260-272, 2000.
doi:10.1364/OE.7.000260

19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing,", Cambridge University Press, New York, 1996.

20. Ma, C., "Coupling properties in periodic waveguides and in multiple quantum-well waveguides ," IEEE J. Quantum. Electron., Vol. 30, 2811-2816, 1994.
doi:10.1109/3.362739

21., The MathWorks, Inc., Natick, MA, USA.

22. Kogelnik, H., "Theory of optical waveguides," Guided-wave Optoelectronics, T. Tamir (ed.), Ch. 2, Springer-Verlag, New York, 1990.

23. Hadley, G. R. and R. E. Smith, "Full-vector waveguide modeling using an iterative finite difference method with transparent boundary conditions ," IEEE J. Quantum. Electron., Vol. 13, 465-469, 1995.

24. Golub, G. H. and C. F. Van Loan, Matrix Computations, The Johns Hopkins Univ. Press, Baltimore, MD, 1983.


© Copyright 2010 EMW Publishing. All Rights Reserved