PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 4 > pp. 105-116

A NEW APPROACH TO EVALUATE THE SURFACE WAVES TERM FOR THE NONSYMMETRICAL COMPONENTS OF GREEN'S FUNCTIONS IN MULTILAYERED MEDIA

By A. K. Abdelmageed

Full Article PDF (339 KB)

Abstract:
The discrete complex image method is one of the most prominent techniques that handle the Sommerfeld integrals encountered in the integral equation formulations of multilayered media. The extraction of surface waves extends the validity of the method to the far field. These surface waves are expressed in terms of Hankel functions that suffers a singularity problem at the origin which contaminates the results in the near field. In this work,w e use a formulation developed recently by the author to derive a new expression for the surface waves. The new expression is shown to obviate the singularity of the Hankel functions at the origin,and hence leads to accurate results in the near field.

Citation:
A. K. Abdelmageed, "A New Approach to Evaluate the Surface Waves Term for the Nonsymmetrical Components of Green's Functions in Multilayered Media," Progress In Electromagnetics Research M, Vol. 4, 105-116, 2008.
doi:10.2528/PIERM08072504

References:
1. Michalski, K. A., "Formulation of mixed-potential integral equations for arbitrarily shaped microstrip structures with uniaxial substrates," Journal of Electromagnetic and Waves and Applications, Vol. 7, 799-817, 1993.

2. Michalski, K. A. and J. R. Mosig, "Multila yered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propagat., Vol. 45, 508-519, 1997.
doi:10.1109/8.558666

3. Fang, D. G. and J. J. Yang G. Y. Delisle, "Discrete image theory for horizontal electric dipoles in a multilayered medium," IEE Proc., Vol. 135, 297-303, 1988.

4. Yang, J. J., Y. L. Chow, and D. G. Fang, "Discrete complex images of a threedimensional dipole above and within a lossy ground," IEE Proc., Vol. 138, 319-326, 1991.

5. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. 37, 229-234, 1989.
doi:10.1109/8.18710

6. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closedform spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, 588-592, 1991.
doi:10.1109/22.75309

7. Aksun, A. K., "A robust approach for the derivation of closed-form Green's functions," IEEE Trans. Antennas Propagat., Vol. 44, 651-658, 1996.
doi:10.1109/8.481641

8. Abdelmageed, A. K., "closed-form expression of the nonsymmetrical components of Green's function for multilayered media ," Electromagn., Vol. 22, 59-70, 2002.
doi:10.1080/027263402753427664

9. Hojjat, N., S. Safavi-Naeini, and Y. L. Chow, "Numerical computation of complex image Green's functions for multilayer dielectric media: Near-field zone and the interface region," IEE Proc. Microwaves, Antennas and Propagat., Vol. 145, 449-454, 1998.
doi:10.1049/ip-map:19982255

10. Ling, F. and J. M. Jin, "Discrete complex image method for Green's functions of general multilayer media," IEEE Microw. Guided Wave Lett., Vol. 10, 400-402, 2000.
doi:10.1109/75.877225

11. Abdelmageed, A. K. and A. Mohsen, "An accurate computation of Green's functions for multilayered media in the near-field region," Microwave & Opt. Technol. Lett., Vol. 29, 130-131, 2001.
doi:10.1002/mop.1106

12. Abdelmageed, A. K. and M. S. Ibrahim, "On enhancing the accuracy of evaluating Green's functions for multilayered media in the near-field region," Prog. in Electromag. Res. M, Vol. 2, 1-14, 2008.
doi:10.2528/PIERM08022505

13. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. Antennas Propagat., Vol. 38, 335-344, 1990.
doi:10.1109/8.52240

14. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves, 653-659, Harp er & Row, New York, 1992.

15. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1965.


© Copyright 2010 EMW Publishing. All Rights Reserved