Vol. 5
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-11-10
Vertical Transition in Multilayer Millimeter Wave Module Using Circular Cavity
By
Progress In Electromagnetics Research M, Vol. 5, 91-100, 2008
Abstract
A novel transition structure based on Substrate Integrated Circular Cavity (SICC) is proposed in this paper. The design approach has been developed for transition designing in other operating frequency. Good performance of flexibility and S-parameters were observed for the new transition structure. Different design tools were used to validate the design method.
Citation
Dakui Wu, Yong Fan, Minghua Zhao, and Yong-Hong Zhang, "Vertical Transition in Multilayer Millimeter Wave Module Using Circular Cavity," Progress In Electromagnetics Research M, Vol. 5, 91-100, 2008.
doi:10.2528/PIERM08101305
References

1. Nedil, M., T. A. Denidni, and A. Djaiz, "Ultra-wideband microstrip to CB-CPW transition applied to broadband filter," Electronics Letters, Vol. 43, No. 8, 464-466, 2007.
doi:10.1049/el:20070693

2. Nedil, M. and T. A. Denidni, "Ultra-wideband back-to-back CBCPW-to-CBCPW transition," Electronics Letters, Vol. 43, No. 12, 677-678, 2007.
doi:10.1049/el:20071103

3. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

4. Deslandes, D. and K. Wu, "Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 8, 2487-2494, 2005.
doi:10.1109/TMTT.2005.852778

5. Suntives, A. and R. Abhari, "Transition structures for 3-D integration of substrate integrated waveguide interconnects," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 10, 697-699, 2007.
doi:10.1109/LMWC.2007.905592

6. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Ultra-wideband shielded vertical via transitions from DC up to the V-band," European Microwave Integrated Circuits Conference, 476-479, 2006.
doi:10.1109/EMICC.2006.282686

7. Swierczynski, T., D. A. McNamara, and M. Clenet, "Via-walled cavities as vertical transitions in multilayer millimetre-wave circuits," Electronics Letters, Vol. 39, No. 25, 1829-1831, 2003.
doi:10.1049/el:20031190

8. Potelon, B., J.-C. Bohorquez, J.-F. Favennec, C. Quendo, E. Rius, and C. Person, "Design of Ku-band filter based on substrate-integrated circular cavities (SICCs)," IEEE MTT-S International Microwave Symposium Digest, 1237-1240, 2006.
doi:10.1109/MWSYM.2006.249434

9. El-Tager, A., J. Bray, and L. Roy, "High-Q LTCC resonators for millimeter wave applications," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 2257-2260, 2003.

10. El-Tager, A. and L. Roy, "Novel cylindrical high-Q LTCC resonators for millimeter wave applications," IEEE MTT-S Int. Microwave Symposium Digest, Vol. 2, 637-640, 2004.

11. Cassivi, Y., et al. "Low-cost and high-Q millimeter-wave resonator using substrate integrated waveguide technique," Proc. 32nd European Microwave Conf., Milan, Italy, Sep. 2002.

12. Tang, H. J., W. Hong, Z. C. Hao, J. X. Chen, and K. Wu, "Optimal design of compact millimeter-wave SIW circular cavity filter ," Electron. Lett., Vol. 41, No. 19, 1068-1069, Sep. 2005.
doi:10.1049/el:20052251

13. Tang, H. J., W. Hong, J. X. Chen, G. Q. Luo, and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities ," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 4, 776-782, Apr. 2007.
doi:10.1109/TMTT.2007.893655

14. Potelon, B., J.-F. Favennec, C. Quendo, E. Rius, C. Person, and J.-C. Bohorquez, "Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 9, 596-598, 2008.
doi:10.1109/LMWC.2008.2002454

15. Valois, R., D. Baillargeat, et al. "High performances of shielded LTCC vertical transitions from DC up to 50 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, Jun. 2005.
doi:10.1109/TMTT.2005.848832

16. Lee, J.-H., S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, "Low loss LTCC cavity filters using system-on-package technology at 60 GHz ," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, Dec. 2005.

17. Eldek, A. A., "Wideband 180◦ phase shifter using microstrip-CPW-microstrip transition," Progress In Electromagnetics Research B, Vol. 2, 177-187, 2008.
doi:10.2528/PIERB07111507

18. El Sabbagh, M. A., H.-T. Hsu, and K. A. Zaki, "Stripline transition to ridge waveguide bandpass filters," Progress In Electromagnetics Research, Vol. 40, 29-53, 2003.
doi:10.2528/PIER02080503

19. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz LTCC SOP applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.
doi:10.2528/PIERL07122805