Vol. 7

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-06-30

Simultaneous TE and TM Surface Polaritons in a Bilayer Composed of a Single-Negative Materials

By Samad Roshan Entezar
Progress In Electromagnetics Research M, Vol. 7, 179-192, 2009
doi:10.2528/PIERM09051102

Abstract

We investigate the dispersion properties of both TE and TM surface polariton modes formed at the surfaces of a bilayer composed of a single-negative materials. The dispersion curves of surface polaritons modes is found to consist of two branches, and it is shown that TE and TM surface polaritons may have a simultaneous mode. The characteristics of TE and TM surface polaritons modes (the frequency, localization position, ...) are shown to depend on the relative thicknesses of two single-negative layers of the bilayer. We find that the TE and TM surface polariton modes propagate in the same directions along the interfaces of the bilayer in the most cases. Nevertheless, the TE and TM surface polariton modes may have opposite directions of propagation for appropriate thicknesses of two single-negative layers. This can be interesting especially in the case of simultaneous TE and TM surface polariton mode, for which the structure acts as a polarizing beam splitter.

Citation


Samad Roshan Entezar, "Simultaneous TE and TM Surface Polaritons in a Bilayer Composed of a Single-Negative Materials," Progress In Electromagnetics Research M, Vol. 7, 179-192, 2009.
doi:10.2528/PIERM09051102
http://www.jpier.org/PIERM/pier.php?paper=09051102

References


    1. Ziolkowski, R. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.
    doi:10.1103/PhysRevE.64.056625

    2. Oliner, A. A., "A periodic-structure negative-refractive-index medium without resonant elements," IEEE-APS/URSI Int'l Symp. Digest, 41, June 2002.

    3. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett., Vol. 14, 68-70, 2004.
    doi:10.1109/LMWC.2003.822563

    4. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propagat., Vol. 52, 1159-1166, 2004.
    doi:10.1109/TAP.2004.827249

    5. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using a left-handed transmission line," IEEE Trans. Microw. Theory Tech., Vol. 52, 798-804, 2004.
    doi:10.1109/TMTT.2004.823541

    6. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxially anisotropic left-handed materials," Progress In Electromagnetics Research, PIER 70, 37-52, 2007.

    7. Chen, L., W. Ding, X. J. Dang, and C. H. Liang, "Counter-propagating energy-flows in nonlinear left-handed metamaterials," Progress In Electromagnetics Research, PIER 70, 257-267, 2007.

    8. Xu, W., L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, "Left-handed material effects on waves modes and resonant frequencies: Filled waveguide structures and substrate-loaded patch antennas," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2033-2047, 2005.
    doi:10.1163/156939305775570459

    9. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
    doi:10.1163/156939306779322620

    10. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI, Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    11. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    13. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    14. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line," IEEE-APS Int'l Symp. Digest, Vol. 2, 412-415, 2002.

    15. Lin, I. H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary duad-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Techniques, Vol. 52, 1142-1149, 2004.
    doi:10.1109/TMTT.2004.825747

    16. Liang, L., B. Li, S.-H. Liu, and C.-H. Liang, "A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays," Progress In Electromagnetics Research, PIER 65, 275-286, 2006.

    17. Hamid, A.-K., "Axially slotted antenna on a circular or elliptic cylinder coated with metamaterials," Progress In Electromagnetics Research, PIER 51, 329-341, 2005.

    18. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, PIER 65, 261-273, 2006.

    19. Alu, A. and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, 199-210, 2004.
    doi:10.1109/TMTT.2003.821274

    20. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Anomalous tunneling and transparency," IEEE Trans. on Antennas and Propagation, Vol. 51, 2558-2570, 2003.
    doi:10.1109/TAP.2003.817553

    21. Dai, X.-W., M. Yao, X.-J. Dang, and C.-H. Liang, "Transparency of a pair of epsilon-negative slab and mu-negative slab," Progress In Electromagnetics Research, PIER 69, 237-246, 2007.

    22. Bilotti, F., A. Alu, N. Engheta, and L. Vegni, "Anomalous properties of scattering from cavities partially loaded with double-negative or single-negative metamaterials," Progress In Electromagnetics Research, PIER 51, 49-63, 2005.

    23. Agranovich, V. M. and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam, 1982.

    24. McGilp, J. F., D. Weaire, and C. H. Patterson, Epioptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces, Springer-Verlag, Berlin, 1995.

    25. Raether, H., Surface Plasmons, Springer-Verlag, Heidelberg, 1988.

    26. Camley, R. E. and D. L. Mills, "Surface polaritons on uniaxial antiferromagnets," Phys. Rev. B, Vol. 26, 1280-1287, 1982.
    doi:10.1103/PhysRevB.26.1280

    27. Ruppin, R., "Surface polaritons of left-handed medium," Phys. Lett. A, Vol. 277, 61-64, 2000.
    doi:10.1016/S0375-9601(00)00694-0

    28. Ruppin, R., "Surface polaritons of left-handed material slab," J. Phys: Condens. Matter, Vol. 13, 1811-1819, 2001.
    doi:10.1088/0953-8984/13/9/304

    29. Bespyatykh, Y. I., A. S. Bugaev, and I. E. Dikshtein, "Surface polaritons in composite media with time dispersion of permittivity and permeability," Phys. Sol. State, Vol. 43, 2043-2047, 2001.

    30. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
    doi:10.1088/0953-8984/10/22/007

    31. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    32. Yeh, P., A. Yariv, and C. S. Hong, , Vol. 67, 423, J. Opt. Soc. Am., 1977.

    33. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., Vol. 216, 398-410, 1968.

    34. Shadrivov, I. V., R. W. Ziolkowski, A. A. Zharov, and Y. S. Kivshar, "Excitation of guided waves in layered structures with negative refraction," Opt. Express, Vol. 13, 481-492, 2005.
    doi:10.1364/OPEX.13.000481

    35. Dragila, R., B. Luther-Davies, and S. Vukovic, "High transparency of classically opaque metallic films," Phys. Rev. Lett., Vol. 55, 1117-1120, 1985.
    doi:10.1103/PhysRevLett.55.1117

    36. Vukovic, S. M., N. B. Aleksic, and D. V. Timotijevic, "Anomalous lateral beam shift and total absorption due to excitation of surface waves in materials with negative refraction," Eur. Phys. J. D, Vol. 39, 295-301, 2006.
    doi:10.1140/epjd/e2006-00092-4

    37. Galli, M., D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C. Andreani, M. Belotti, and Y. Chen, "Excitation of radiative and evanescent defect modes in linear photonic crystal waveguides," Phys. Rev. B, Vol. 70, 081307-4, 2004.
    doi:10.1103/PhysRevB.70.081307

    38. Galli, M., M. Belotti, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B, Vol. 72, 125322-10, 2005.
    doi:10.1103/PhysRevB.72.125322