Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 11 > pp. 37-52


By C. S. Gurel and E. Yazgan

Full Article PDF (256 KB)

In this study, annular-ring microstrip patch on uniaxial medium is analysed in Hankel Transform Domain. Equivalent models of the structure are obtained depending on the TE and TM mode decomposition in this domain. For the simplification of the tensor form formulations, equivalent matrix operators are defined in cylindrical coordinates instead of the differential ones. Then, resonant characteristics of the structure is determined via the application of the moment method and compared with the isotropic case for different anisotropy ratio values and structural parameters. Equivalent circuit models for the case of multilayered substrates and superstrates are given in order to be used in the following studies on annular-ring microstrip patch.

C. S. Gurel and E. Yazgan, "Analysis of Annular Ring Microstrip Patch on Uniaxial Medium via Hankel Transform Domain Immittance Approach," Progress In Electromagnetics Research M, Vol. 11, 37-52, 2010.

1. Itoh, T., "Spectral domain immitance approach for dispersion characteristics of generalised printed transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 28, No. 7, 733-736, 1980.

2. Araki, K. and T. Itoh, "Hankel transform domain analysis of open circular microstrip radiating structures," IEEE Trans. Antennas and Propagat., Vol. 29, No. 1, 84-89, Jan. 1981.

3. Ali, S. M., W. C. Chew, and J. A. Kong, "Vector Hankel transform analysis of annular ring microstrip antenna," IEEE Trans. Antennas and Propagat., Vol. 30, No. 7, 637-644, Jul. 1982.

4. Lee, H. and V. K. Tripathi, "Spectral domain analysis of frequency dependent propagation characteristics of planar structures on uniaxial medium," IEEE Trans. Microwave Theory and Tech., Vol. 30, 1188-1193, Aug. 1982.

5. Krowne, C. M., "Green's function in the spectral domain for biaxial and uniaxial anisotropic planar dielectric structures," IEEE Trans. Antennas and Propagat., Vol. 32, 1273-1281, Dec. 1984.

6. Nakatani, A. and N. G. Alexopoulos, "Toward a generalised algorithm for the modeling of the dispersive properties of integrated circuit structures on anisotropic substrates," IEEE Trans. Microwave Theory and Tech., Vol. 12, 1436-1441, Dec. 1985.

7. Araki, K., H. Ueda, and T. Masayuki, "Numerical analysis of circular disk microstrip antennas with parasitic elements," IEEE Trans. Antennas and Propagat., Vol. 34, 1390-1394, Dec. 1986.

8. Pozar, D. M., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Trans. Antennas and Propagat., Vol. 35, 613-621, June 1987.

9. Nelson, R. M., D. A. Rogers, and A. G. D'Assuncao, "Resonant frequency of a rectangular microstrip patch on several uniaxial substrates," IEEE Trans. Antennas and Propagat., Vol. 38, 973-981, Jul. 1990.

10. Fan, Z. and K. F. Lee, "Hankel transform domain analysis of dual-frequency stacked circular disk and annular ring microstrip antennas," IEEE Trans. Antennas and Propagat., Vol. 39, No. 6, 867-870, Jun. 1991.

11. Gurel, C. S. and E. Yazgan, Bandwidth widening in annular ring microstrip antennas with superstrate, Proc. IEEE/AP-S Int. Symp., 692-695, 1995.

12. Kuo, J. T., "Vector finite Hankel transform analysis of shielded single and coupled microstrip ring structures," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, 2161-2164, Nov. 1999.

13. Losada, V., R. R. Boix, and M. Horno, "Full wave analysis of circular microstrip resonators in multilayered media containing uniaxial anisotropic dielectrics, magnetized ferrites, and chiral materials," IEEE Trans. Microwave Theory and Tech., Vol. 48, 1057-1064, Jun. 2000.

14. Barkat, W. and A. Benghalia, "Annular ring microstrip antenna in multilayered media containing uniaxial dielectrics," First Int. Symp. on Control, Commun. and Signal Processing, 327-330, 2004.

15. Gurel, C. S. and E. Yazgan, "Characteristics of a circular patch microstrip antenna on uniaxially anisotropic substrate," IEEE Trans. Antennas and Propagat., Vol. 52, No. 10, 2532-2537, Oct. 2004.

16. Feitoza, G. M., A. G. d'Assuncao, S. G. Silva, and J. R. S. Oliveira, Analysis of circular microstrip patch antennas on anisotropic substrates using Hertz vector potentials, Proc. 2005 Asia-Pacific Micr. Conf. (APMC2005), China, 2005.

17. Vasconcelos, C. F. L., S. G. Silva, M. R. M. L. Albuquerque, J. R. S. Oliveira, and G. d'Assuncao, "Annular ring microstrip antennas for millimeter wave applications," Int. J. Infrared Millim. Waves, Vol. 28, 821-829, 2007.

18. Barkat, Q. and A. Benghalia, "Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxia anisotropic media," Int. J. Infrared Millim. Waves, Jun. 2009.

19. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2006.

20. Rezaiesarlak, R. and F. Hodjatkashani, "Analysis of capacitively coupled microstrip-ring resonator based on spectral domain method," Progress In Electromagnetics Research Letter, Vol. 3, 25-33, 2008.

21. Khah, S. K., T. Chakarvarty, and P. Balamurali, "Analysis of an electromagnetically coupled microstrip ring antenna using extended feedline," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 369-376, 2009.

22. Chen, Y. C. and B. Beker, "Analysis of single and coupled microstrip lines on anisotropic substrates using differential matrix operators and the spectral domain method," IEEE Trans. Microwave Theory and Tech., Vol. 41, 123-127, Jan. 1993.

© Copyright 2010 EMW Publishing. All Rights Reserved