Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 13 > pp. 29-40


By A. M. Attiya

Full Article PDF (299 KB)

Shift-Operator Finite difference Time Domain (SO-FDTD) method is introduced as a new efficient technique for simulating electromagnetic wave interaction with chiral medium. The dispersive properties of this medium are presented as polynomials of . These polynomials are converted to time domain by replacing by the time derivative operator. Then this time derivative operator is converted to the corresponding time shift operator which is used directly to obtain the corresponding update equations of electric and magnetic field components. The resulting update equations do not require time convolution or additional vector components. The present analysis does not require also any transformation. Significant improvement is obtained in memory requirements by using this method while the computational time is nearly the same compared with other similar techniques like Z-transformation FDTD.

A. M. Attiya, "Shift-Operator Finite Difference Time Domain Analysis of Chiral Medium," Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010.

1. Bassiri, S., C. H. Pappas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Amer. A, Vol. 5, No. 9, 1450-1459, 1988.

2. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.

3. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propag., Vol. 52, 2267-2276, 2004.

4. Barba, I., A. Grande, A. C. L. Cabeceira, and J. Represa, "A multiresolution model of transient microwave signals in dispersive chiral media," IEEE Trans. Antennas Propag., Vol. 54, 2808-2812, 2006.

5. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propag., Vol. 53, 3374-3384, 2005.

6. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the Mobius transformation techniques," IEEE Antennas Wireless Propag. Lett., Vol. 5, 327-330, 2006.

7. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.

8. Grande, A., J. A. Pereda, O. Gonzalez, and A. Vegas, "On the equivalence of several FDTD formulations for modeling electromagnetic wave propagation in double-negative metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 6, 324-327, 2007.

9. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.

10. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2005.

11. Yang, H. W., "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation," Computer Physics Communication, Vol. 180, 55-60, 2009.

12. Yang, H. W., R. S. Chen, and Y. Zhou, "SO-FDTD analysis on magnetized plasma," Int. J. Infrared Milli. Waves, Vol. 28, 751-758, 2007.

13. Duan, X., H. W. Yang, X. Kong, and H. Liu, "Analysis on the calculation of plasma medium with parallel SO-FDTD method," ETRI Journal, Vol. 31, 387-392, 2009.

14. Ma, L.-X., H. Zhang, H.-X. Zheng, and C.-X. Zhang, "Shift-operator FDTD method for anisotropic plasma in kDB coordinates system ," Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010.

15. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Timeharmonic electromagnetic fields in chiral media," Lecture Notes n Physics, Vol. 335, Springer-Verlag, New York, 1989.

16. Ramadan, O., "Addendum to: `A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation Computer Physics Communications Vol. 180, No. 1, 55-60, 2009. A short comment on the equivalence of the shift-operator FDTD method and the bilinear frequency approximation technique for modeling dispersive electromagnetic applications," Computer Physics Communications, Vol. 181, 1275-1276, 2010.

17. Proakis , J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 3rd Ed., Prentice Hall International Editions, 1996.

© Copyright 2010 EMW Publishing. All Rights Reserved