Vol. 14

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-10-21

GPU-Accelerated Fundamental Adi-FDTD with Complex Frequency Shifted Convolutional Perfectly Matched Layer

By Wei Choon Tay, Ding Yu Heh, and Eng Leong Tan
Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010
doi:10.2528/PIERM10090605

Abstract

This paper presents the graphics processing unit (GPU) accelerated fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) with complex frequency shifted convolutional perfectly matched layer (CFS-CPML). The compact matrix form of the conventional ADI-FDTD method with CFS-CPML is formulated into FADI-FDTD with its right-hand-sides free of matrix operators, resulting in simpler and more concise update equations. Using Compute Unified Device Architecture (CUDA), the FADI-FDTD with CFS-CPML is further incorporated into the GPU to exploit data parallelism. Numerical results show that a much higher efficiency gain of up to 15 times can be achieved.

Citation


Wei Choon Tay, Ding Yu Heh, and Eng Leong Tan, "GPU-Accelerated Fundamental Adi-FDTD with Complex Frequency Shifted Convolutional Perfectly Matched Layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605
http://www.jpier.org/PIERM/pier.php?paper=10090605

References


    1. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
    doi:10.1109/22.869007

    2. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
    doi:10.1109/22.873904

    3. Tay, W. C. and E. L. Tan, "Implementation of the Mur first order absorbing boundary condition in e±cient 3-D ADI-FDTD," IEEE Antennas and Propag. Society Int. Symp., 1-4, Jun. 2009.
    doi:10.1109/APS.2009.5172059

    4. Tay, W. C. and E. L. Tan, "Mur absorbing boundary condition for efficient fundamental 3-D LOD-FDTD," IEEE Microw. Wireless Comp. Lett., Vol. 20, No. 2, 61-63, Feb. 2010.
    doi:10.1109/LMWC.2009.2038429

    5. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, Oct. 1994.
    doi:10.1006/jcph.1994.1159

    6. Gedney, S. D., G. Liu, J. Alan Rodden, and A. Zhu, "Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method," IEEE Trans. Antennas Propagat., Vol. 48, No. 11, 1554-1559, Nov. 2001.

    7. Tan, E. L., "Efficient algorithm for the unconditionally stable," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 1, 7-9, Jan. 2007.
    doi:10.1109/LMWC.2006.887239

    8. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 170-177, Jan. 2008.
    doi:10.1109/TAP.2007.913089

    9. Inman, M. J. and A. Z. Elsherbeni, "Programming video cards for computational electromagnetics applications," Antennas Propag. Mag., Vol. 47, 71-78, Dec. 2005.
    doi:10.1109/MAP.2005.1608730

    10. Tao, Y.-B., H. Lin, and H. J. Lin, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
    doi:10.2528/PIER07121302

    11. Pharr, M. and R. Fernando, GPUGems2: Programming Techniques for High-performance Graphics and General-purpose Computation, Addison-Wesley, 2005.

    12. Owens, J. D., et al., "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, May 2008.
    doi:10.1109/JPROC.2008.917757

    13. Nvidia Corporation, NVIDIA CUDA Programming Guide, Version 2.3, Aug. 2009.

    14. Kirk, D. B. and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

    15. Isaacson, E., Analysis of Numerical Methods, Dover Publication, 1994.