Vol. 16

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-01-05

Effects of Random Errors Upon Effective Permittivity of a Composite Containing Short Needles

By Zeshan Akbar Awan and Azhar Abbas Rizvi
Progress In Electromagnetics Research M, Vol. 16, 117-131, 2011
doi:10.2528/PIERM10100308

Abstract

A composite medium containing perfectly conducting short needles can have a range of frequency for which the real part of the effective permittivity of the composite is negative. Such a range of frequency can be taken as negative bandwidth. This negative bandwidth for a composite medium is dependent upon parameters like positioning, orientation, length and needle density of short needles. Effects of random errors in positioning and orientation of short needles upon the ensemble averaged effective permittivity are analyzed. It is studied theoretically that increasing error in positioning and orientation of short needles reduces negative bandwidth.

Citation


Zeshan Akbar Awan and Azhar Abbas Rizvi, "Effects of Random Errors Upon Effective Permittivity of a Composite Containing Short Needles," Progress In Electromagnetics Research M, Vol. 16, 117-131, 2011.
doi:10.2528/PIERM10100308
http://www.jpier.org/PIERM/pier.php?paper=10100308

References


    1. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated coducting inclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, 1996.
    doi:10.1103/PhysRevB.53.6318

    2. Moses, C. A. and N. Engheta, "Electromagnetic wave propagation in the wire medium: A complex medium with long thin inclusions," Wave Motion, Vol. 34, 301-317, 2001.
    doi:10.1016/S0165-2125(01)00095-6

    3. Makhnovskiy, D. P. and L. V. Panina, "Field dependent permittivity of composite materials containing ferromagnetic wires," Journal of Applied Physics, Vol. 93, No. 7, 4120-4129, 2003.
    doi:10.1063/1.1557780

    4. Matitsine, S. M. , K. M. Hock, L. Liu, Y. B. Gan, A. N. Lagarkov, and K. N. Rozanov, "Shift of resonance frequency of long conducting fibers embedded in a composite," Journal of Applied Physics, Vol. 94, No. 2, 1146-1154, 2003.
    doi:10.1063/1.1577395

    5. Liu, L., S. M. Matitsine, Y. B. Gan, and K. N. Rozanov, "Effective permittivity of planar composites with randomly or periodically distributed coducting fibers," Journal of Applied Physics, Vol. 98, 063512, 2005.
    doi:10.1063/1.2035895

    6. Belov, P. A. , S. A. Tretyakov, and A. J. Viitanen, "Dispersion and re°ection properties of artificial media formed by regular lattices of ideally conducting wires," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1153-1170, 2002.
    doi:10.1163/156939302X00688

    7. Deshpande, V. M. and M. D. Deshpande, "Study of electro-magnetic wave propagation through dielectric slab doped randomly with thin metallic wires using finite element method," IEEE Microwave and Wireless Component Letters, Vol. 15, No. 5, May 2005.
    doi:10.1109/LMWC.2005.847663

    8. Ozbay, E., K. Aydin, E. Cubukcu, and M. Bayindir, "Transmission and reflection properties of composite double negative metmaterials in free space," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2592-2595, Oct. 2003.
    doi:10.1109/TAP.2003.817570

    9. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Physical Review E, Vol. 68, 065602-1, 2003.
    doi:10.1103/PhysRevE.68.065602

    10. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left handed materials," Physical Review Letters, Vol. 93, No. 10, 107402-1, Sep. 2004.
    doi:10.1103/PhysRevLett.93.107402

    11. Fu, Q. and X. Zhao, "The bianisotropic medium model for left-handed metamaterials and numerical calculation of negative electromagnetic parameers," Physica B, Vol. 404, 1045-1052, Sep. 2009.
    doi:10.1016/j.physb.2008.11.030

    12. Awan , Z. A. and A. A. Rizvi, "Effects of random positioning errors upon electromagnetic characteristics of a wire grid," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 351-364, 2011.
    doi:10.1163/156939311794362768

    13. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley and Sons Inc., New York, 1999.

    14. Awan, Z. A. and A. A. Rizvi, "Random errors modelling and their e®ects upon RCS for an artificial object containing thin long PEC needles," Progress In Electromagnetics Research M, Vol. 7, 149-164, 2009.
    doi:10.2528/PIERM09042703

    15. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., John Wiley and Sons Inc., New York, 1997.

    16. Tretyakov, S. A. , S. Maslovski, and P. A. Belov, "An analytical model of metamaterials based on loaded wire dipoles," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2652-2658, Oct. 2003.
    doi:10.1109/TAP.2003.817557

    17. Tretyakov, S. A., Analytical Modeling in Applied Electromagnetics, Artech House Inc., Norwood, MA, 2003.

    18. Silveirinha, M. G., "Generalized Lorentz-Lorenz formulas for microstructured materials," Physical Review B, Vol. 76, 245117-1, 2007.
    doi:10.1103/PhysRevB.76.245117

    19. Collin, R. E., "Field Theory of Guided Waves," IEEE Press, 1990.

    20. Lathi, B. P., "Modern Digital and Analog Communication Systems," Oxford University Press, 703{-705, Mar. 1998.

    21. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Chap. 6, McGraw Hill Book Company Inc., New York, 1978.

    22. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, 7th Ed., Sec. 9.5, Academic Press, Burlington, MA, USA, 2007.

    23. Heldring, A., E. Ubeda, and J. M. Rius, "Effecient computation of the effect of wire ends in thin wire analysis," IEEE Trans. Antennas and Propagation, Vol. 54, No. 10, 250-259, 2006.
    doi:10.1109/TAP.2006.882194