Vol. 16

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Novel Broadband Coaxial Probe to Conical Wire Transition at THz Frequency

By Zhihui Wang, Yong Zhang, Rui-Min Xu, and Weigan Lin
Progress In Electromagnetics Research M, Vol. 16, 31-45, 2011


In this study, transmission characteristics of a novel THz wire waveguide --- conical metal wire with dielectric coating at 0.1-1 THz are studied. The investigation results show that the coated conical wire with virtually low attenuation and high energy concentration is a promising candidate as THz transmission medium. The calculation results agree well with that of simulation such as high frequency structure simulation (HFSS), which is based on the finite element method. In this paper, a novel transition from a coaxial line to the coated conical metal wire is designed. Although coaxial probe excitation has been used in microstrip lines and rectangular waveguides in microwave, millimeter-wave frequency domains, the present study shows that it is also an effective method to excite conical wire at THz frequency. As shown in the investigation results, the return loss of coax-conical wire transition is better than 20 dB from 0.1-0.5 THz, and the insertion loss is as low as 1 dB (the total length is 15 mm). It is a promising THz transition structure.


Zhihui Wang, Yong Zhang, Rui-Min Xu, and Weigan Lin, "A Novel Broadband Coaxial Probe to Conical Wire Transition at THz Frequency," Progress In Electromagnetics Research M, Vol. 16, 31-45, 2011.


    1. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech., Vol. 52, 2438-2447, 2004.

    2. Nagel, M. , P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett., Vol. 80, 154-156, 2002.

    3. Schmuttenmaer, C. A., "Exploring dynamics in the far-Infrared with terahertz spectroscopy," Chem. Rev., Vol. 104, 1759-1779, 2004.

    4. Ogawa, Y., S. Hayashi, C. Otani, and K. Kawase, "Terahertz sensing for ensuring the safety and security," PIERS Online, Vol. 4, No. 3, 396-400, 2008.

    5. Zhang, X. C., "Terahertz wave imaging: Horizons and hurdles," Phys. Med. Biol., Vol. 47, 3667-3677, 2002.

    6. Awad, M. M. and R. A. Cheville, "Transmission terahertz waveguide-based imaging below the diffraction limit," Appl. Phys. Lett., Vol. 86, 1-3, 2005.

    7. McGowan, R. W., G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett., Vol. 24, No. 20, 1431-1433, 1999.

    8. Gallot, G. , S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B, Vol. 17, No. 5, 851-863, 2000.

    9. Zhou, Y. and S. Lucyszyn, "HFSSTM modeling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.

    10. Lucyszyn, S. and Y. Zhou, "Engineering approach to modeling frequency dispersion within normal metals at room temperature for THz applications," Progress In Electromagnetics Research, Vol. 101, 257-275, 2010.

    11. Mendis, R. and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys, Vol. 88, 4449-4451, 2000.

    12. Jamison, S. P., R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett., Vol. 76, 1987-1989, 2000.

    13. Ponseca Jr., C. S., et al., "Transmission of terahertz radiation using a microstructured polymer optical fiber," Opt. Lett., Vol. 33, 902-904, 2008.

    14. Han, H., H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett., Vol. 80, 2634-2636, 2002.

    15. Chen, D. and H. Chen, "Highly birefringent low-Loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1553-1562, 2010.

    16. Harrington, J. A., R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express, Vol. 12, 5263-5268, 2004.

    17. He, X. Y. and H. X. Lu, "Investigation on propagation properties of terahertz waveguide hollow plastic fiber," Opt. Fiber Technol., Vol. 12, 145-148, 2009.

    18. Matsuura, Y. and E. Takeda, "Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy," J. Opt. Soc. Am. B, Vol. 25, 1949-1954, 2008.

    19. Mendis, R. and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett., Vol. 26, 846-848, 2001.

    20. Coleman, S. and D. Grischkowsky, "A THz transverse electro-magnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett., Vol. 83, 3656-3658, 2003.

    21. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental investigation on flanged parallel-plate dielectric waveguide probe for detection of conductive inclusions in lossy dielectric medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 681-693, 2010.

    22. Cheng, Q. and T. J. Cui, "Guided modes and continuous modes in parallel-plate waveguides excited by a line source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1577-1587, 2007.

    23. Wang, K. and M. Mittleman, "Metal wires for terahertz wave guiding," Nature, Vol. 432, 376-379, 2004.

    24. McGowan, R. W., G. Gallot, and D. Grischkowsky, "Propagation of ultra wideband short pulses of THz radiation through submillimeterdiameter circular waveguides," Opt. Lett., Vol. 24, 1431-1433, 1999.

    25. Wang, K. L. and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett., Vol. 96, 157401, 2006.

    26. Van der Valk, N. C. J. and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett., Vol. 87, 071106, 2005.

    27. Walther, M., M. R. Freeman, and F. A. Hegmann, "Metal-wire terahertz time-domain spectroscopy," Appl. Phys. Lett., Vol. 87, 261107, 2005.

    28. Hagmann , M. J., "Isolated carbon nanotubes as high-impedance transmission lines for microwave through terahertz frequencies," IEEE Trans. Nanotech., Vol. 4, 289-296, 2005.

    29. Jeon, T.-I. , J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett., Vol. 86, 161904, 2005.

    30. Ji, Y. B. , E. S. Lee, J. S. Seok, T.-I. Jeon, M. H. Kwak, and K.-Y. Kwang, "Guidance properties of metal wire waveguide by terahertz pulse propagation," J. Korean Phys. Soc., Vol. 50, 1238-1242, 2007.

    31. Yang, F., J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B, Vol. 44, 5855-5872, 1991.

    32. Goubau , G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 1119-1128, 1950.

    33. Deibel, J. A., N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires," Opt. Express, Vol. 14, 8772-8778, 2006.

    34. Smorenburg, P. W., W. P. E. M. O. Root, and O. J. Luiten, "Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches," Phys. Rev. B , Vol. 78, 115415, 2008.

    35. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 93, 137404, 2004.

    36. Liang, H. , S. Ruan, and M. Zhang, "Terahertz surface wave propagation and focusing on conical metal wires," Opt. Express, Vol. 16, 18241-18248, 2008.

    37. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett., Vol. 97, 176805, 2006.

    38. Vernon, K. C. , D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys., Vol. 101, 104312, 2007.

    39. Awad, M. , M. Nagel, and H. Kurz, "Tapered Sommerfeld wire terahertz near-field imaging," Appl. Phys. Lett., Vol. 94, 051107, 2009.

    40. Issa, N. A. and R. Guckenberger, "Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons," Opt. Express, Vol. 15, 12131-12144, 2007.

    41. King, M. J. and J. C. Wiltse, "Surface-wave propagation on coated and uncoated metal wires at millimeter wavelengths," IRE Trans. Antennas Propag., Vol. 10, 246-254, 1962.

    42. Pozar, D. M., Microwave Engineering, Whily, New York, 2004.

    43. Ji , Y. B. , E. S. Lee, J. S. Jang, and T.-I. Jeon, "Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide," Opt. Express, Vol. 16, 271-278, 2008.

    44. Ye, L. F., R. M. Xu, Z. H. Wang, and W. G. Lin, "A novel broadband coaxial probe to parallel plate dielectric waveguide transition at THz frequency," Opt. Express, Vol. 18, 21725-21731, 2010.