PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 16 > pp. 245-259

FLOATING INTERPOLATION STENCIL TOPOLOGY-BASED IE-FFT ALGORITHM

By J. Yin, J. Hu, Z.-P. Nie, X. Feng, and S. He

Full Article PDF (531 KB)

Abstract:
The integral equation fast Fourier transform (IE-FFT) is a fast algorithm for 3D electromagnetic scattering and radiation problems based on the interpolation of the Green's function. In this paper, a novel floating interpolation stencil topology is used to improve the IE-FFT algorithm. Compared to the traditional interpolation stencil topology, it can further reduce the storage and CPU time for the IE-FFT algorithm. The reduction is especially significant for volume integral equations. Furthermore, the accuracy of the algorithm is still good though the near-interaction element numbers are reduced. Finally, some numerical results including perfectly electric conductors, dielectric objects, composite conducting and dielectric objects are given to demonstrate the performance of the present method.

Citation:
J. Yin, J. Hu, Z.-P. Nie, X. Feng, and S. He, "Floating Interpolation Stencil Topology-Based Ie-FFT Algorithm," Progress In Electromagnetics Research M, Vol. 16, 245-259, 2011.
doi:10.2528/PIERM10103104

References:
1. Mautz, J. R. and R. F. Harrington, "H-field, E-field and combined-field solution for conducting bodies of revolution," AEU, Vol. 32, No. 4, 157-164, 1978.

2. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antennas Propagat., Vol. 48, No. 12, 1866-1868, Dec. 2000.
doi:10.1109/8.901277

3. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, 635-640, May 1986.
doi:10.1109/TAP.1986.1143871

4. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering," Microw. Opt. Tech. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

6. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

7. Bindiganavale, S. S., J. L. Volakis, and H. Anastassiu, "Scattering from planar structures containing small features using the adaptive integral method (AIM)," IEEE Trans. Antennas Propagat., Vol. 46, 1867-1878, Dec. 1998.
doi:10.1109/8.743831

8. Phillips, J. R. and J. K. White, "A Precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-aided Design of Integrated Circuit and Systems, Vol. 16, 1059-1072, Oct. 1997.

9. Nie, X., L.-W. Li, N. Yuan, and Y. T. Soon, "Pre-corrected FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, 2002.
doi:10.1163/156939302X00697

10. Fasenfest, B. J., F. Capolino, D. R. Wilton, D. R. Jackson, and N. J. Champagne, "A fast MoM solution for large arrays: Green's function interpolation with FFT," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 161-164, Dec. 2004.
doi:10.1109/LAWP.2004.833713

11. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Trans. Magn., Vol. 41, 1476-1479, May 2005.

12. Ozdemir, N. A. and J. F. Lee, "IE-FFT algorithm for a nonconformal volume integral equation for electromagnetic scattering from dielectric objects," IEEE Trans. Magn., Vol. 44, 1398-1401, Jun. 2008.
doi:10.1109/TMAG.2008.915842

13. Li, L., H. G. Wang, and C. H. Chan, "An improved multilevel Green's function interpolation method with adaptive phase compensation," IEEE Trans. Antennas Propagat., Vol. 56, No. 5, 1381-1393, May 2008.
doi:10.1109/TAP.2008.922611

14. Lai, B., et al., "A novel Gaussian interpolation formula-based IE-FFT algorithm for solving EM scattering problems," Microwave and Optical Technology Letters, Vol. 51, No. 09, 2233-2236, Sep. 2009.
doi:10.1002/mop.24523

15. Chen, Z. K., S. L. Chai, H. Yang, and J. J. Mao, "Precorrected-FFT method for EM scattering from composite metallic-dielectric objects," Chinese Sci. Bull., Vol. 55, 656-663, 2010.
doi:10.1007/s11434-009-0237-9

16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

17. Graglia, R. D. , D. R. Wilton, and A. F. Peterson, "High order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649

18. Hu , J. , Z. Nie, and X. Gong, "Solving electromagnetic scattering and radiation by FMM with curvilinear RWG basis," Chinese Journal of Electronics, Vol. 12, No. 3, 457-460, 2003.

19. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, No. 1, 77-85, Jan. 1984.
doi:10.1109/TAP.1984.1143193

20. Hu, J. and Z. Nie, "Improved electric field integral equation (IEFIE) for analysis of scattering from 3-D conducting structures," IEEE Trans. Electromagn. Compat., Vol. 49, No. 3, 644-648, Aug. 2007.
doi:10.1109/TEMC.2007.902182

21. Guo, J.-L., J.-Y. Li, and Q.-Z. Liu, "Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 1910-1916, Jul. 2006.
doi:10.1109/TAP.2006.877157


© Copyright 2010 EMW Publishing. All Rights Reserved