Vol. 17
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-02-12
Coplanar MEMS Phased Array Antenna Using Koch Fractal Geometry
By
Progress In Electromagnetics Research M, Vol. 17, 29-42, 2011
Abstract
A 3-bit phase array system including phase shifter blocks and antenna elements has been developed on a coplanar waveguide (CPW) using micro electromechanical system (MEMS) technology. The non Euclidean Koch fractal geometry has been used to improve the frequency behavior of the entire system. It is shown that the fractal geometry makes the design to have lower profile, wider frequency bandwidth, and lower mutual coupling effects. It also decreases the actuation voltage of the MEMS switch elements. The fabrication process has been fully described and the measured values regarding every single block is presented.
Citation
Mohammad Jahanbakht, and Abbas Ali Lotfi-Neyestanak, "Coplanar MEMS Phased Array Antenna Using Koch Fractal Geometry," Progress In Electromagnetics Research M, Vol. 17, 29-42, 2011.
doi:10.2528/PIERM11010301
References

1. Schoebel, J., T. Buck, M. Reimann, M. Ulm, M. Schneider, A. Jourdain, G. J. Carchon, and H. A. C. Tilmans, "Design considerations and technology assessment of phased-array antenna systems with RF MEMS for automotive radar applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, Jun. 2005.
doi:10.1109/TMTT.2005.848838

2. Gautier, W., A. Stehle, C. Siegel, B. Schoenlinner, V. Ziegler, U. Prechtel, and W. Menzel, "Hybrid integrated RF-MEMS phased array antenna at 10 GHz," 38th European Microwave Conference, EuMC 2008, 139-142, 2008.
doi:10.1109/EUMC.2008.4751407

3. Laskar, J., S. Pinel, S. Sarkar, P. Sen, B. Perunama, M. Leung, D. Dawn, D. Yeh, F. Barale, K. Chuang, G. Iyer, J. H. Lee, and P. Melet, "60 GHz CMOS/PCB co-design and phased array technology," IEEE Custom Integrated Circuits Conference, USA, CICC 2009, 453-458, 2009.

4. Mousavi, P., M. Fakharzadeh, S. H. Jamali, K. Narimani, M. Hossu, H. Bolandhemmat, G. Rafi, and S. Safavi-Naeini, "A low-cost ultra low profile phased array system for mobile satellite reception using zero-knowledge beamforming algorithm," IEEE Transactions on Antennas and Propagation, Vol. 56, 3667-3679, Dec. 2008.
doi:10.1109/TAP.2008.2005928

5. Van Ardenne, A., J. D. Bregman, W. A. Van Cappellen, G. W. Kant, and J. G. B. De Vaate, "Extending the field of view with phased array techniques: Results of european SKA research," Proceedings of the IEEE, Vol. 97, 1531-1542, Aug. 2009.
doi:10.1109/JPROC.2009.2021594

6. Afrang, S. and B. Yeop Majlis, "Small size Ka-band distributed MEMS phase shifters using inductors," Progress In Electromagnetics Research B, Vol. 1, 95-113, 2008.
doi:10.2528/PIERB07101903

7. Li, L. and D. Uttamchandani, "Demonstration of a tunable RF MEMS bandpass filter using silicon foundry process," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 405-413, 2009.
doi:10.1163/156939309787604355

8. Jahanbakht, M., A. A. Lotfi Neyestanak, and M. Naser Moghaddasi, "Coplanar waveguide wideband fractal koch antenna," Microwave and Optical Technology Letters, MOP, Vol. 50, No. 4, 936-939, Wiley, Apr. 2008.
doi:10.1002/mop.23241

9. Jahanbakht, M., M. N. Moghaddasi, and A. A. Lotfi Neyestanak, "Low actuation voltage ka-band fractal MEMS switch," Progress In Electromagnetics Research C, Vol. 5, 83-92, 2008.

10. Jahanbakht, M., M. Naser-Moghaddasi, and A. A. Lotfi Neyestanak, "Fractal beam Ku-band mems phase shifter," Progress In Electromagnetics Research Letters, Vol. 5, 73-85, 2008.
doi:10.2528/PIERL08101703