PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 93-107

MULTI-POLARIZED MICROWAVE POWER IMAGING ALGORITHM FOR EARLY BREAST CANCER DETECTION

By W. Shao and R. S. Adams

Full Article PDF (415 KB)

Abstract:
A new image reconstruction algorithm for early breast cancer detection using ultra-wideband microwave signals is proposed. In this algorithm, the backscattered electric and magnetic fields are measured and combined in a novel way; the direction of power flow with respect to a given focal point is used to localize tumors. Significant improvement in signal-to-mean raito (SMR) and signal-to-clutter ratio (SCR) are achieved when driving signals consist of waves with multiple polarizations. Numerical results demonstrate nearly 5.5 dB improvement of SMR and SCR over the traditional Confocal Microwave Imaging method when a single 8 mm breast tumor is present. Breast Cancer Facts Figures 2011-2012

Citation:
W. Shao and R. S. Adams, "Multi-Polarized Microwave Power Imaging Algorithm for Early Breast Cancer Detection," Progress In Electromagnetics Research M, Vol. 23, 93-107, 2012.
doi:10.2528/PIERM11082510

References:
1., , American Cancer Society,Breast Cancer Facts Figures 2011-2012, Nov. 2011. Available on www.cancer.org/Research/Cancer FactsFigures/BreastCacerFactsFigures .

2. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiograph., Vol. 18, No. 5, 1137-1154, 1998.
doi:10.1056/NEJM199804163381601

3. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammagrams and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1109/10.730440

4. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, 1470-1479, Dec. 1998.
doi:10.1109/10.1374

5. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, 257-263, Apr. 1988.

6. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, Apr. 1994.

7. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, Feb. 1984.
doi:10.1088/0031-9155/52/20/002

8. Lazebnik, M., D. Popovid, L. McCartney, C. Watkins, M. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. Breslin, W. Temple, D. Mew, J. Booske, M. Okoniewski, and S. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/10/001

9. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1109/8.992560

10. Cui, T. and W. Chew, "Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half- space," IEEE Trans. Antennas and Propagation, Vol. 50, No. 1, 42-49, Jan. 2002.

11. Born, M. and E.Wolf, Principles of Optics, 6th edition, Pergamon Press, New York, 1980.
doi:10.1002/ima.1850030405

12. Moghaddam, M., W. C. Chew, and M. Oristaglio, "Comparison of the born iterative method and Tarantola's method for an electromagnetic time-domain inverse problem," Int. J. Imag. Sys. Tech., Vol. 3, No. 4, 318-333, 1991.
doi:10.1109/42.56334

13. Chew, W. and Y. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imaging, Vol. 9, No. 2, 218-225, Jun. 1990.
doi:10.1109/TMI.2008.2008959

14. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imaging, Vol. 28, No. 7, 969-981, Jul. 2009.
doi:10.1109/TBME.2002.800759

15. Fear, E., X. Li, S. C. Hagness, and M. Stunchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in 3 dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2008.919716

16. Lim, H. B., N. T. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply- and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.

17. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," Int. Journal of Ant. and Prop., Vol. 2008, 9, Article ID 761402, 2008, doi:10.1155/2008/761402..

18. Shao, W. and R. Adams, "UWB imaging with multi-polarized signals for early breast cancer detection," Proceedings of the 2010 IEEE Ant. and Prop. Society International Symposium, 1-4, 2010.

19. Shao, W., B. Zhou, and G. Wang, "UWB microwave imaging for early detection of breast cancer," Journal of Microwaves, Vol. 21, No. 3, 64-67, 2005, in Chinese..

20. Li, X. and S. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 3, 130-132, The UWCEM Numerical Breast Phantoms Repository. Available at http://uwcem.ece.wisc.edu/MRIdatabase/. 2001.

21., , The UWCEM Numerical Breast Phantoms Repository. Available at http://uwcem.ece.wisc.edu/MRIdatabase/..

22. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, No. 14, 302-307, 1966.

23. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica, Vol. 27, No. 10, 1063-1076, 1984.

24., , University of Texas MD Anderson Cancer Center, "Breast cancer screening: Increased risk," available on http://www.mdanderson.org..

25. Flores-Tapia, D., G. Thomas, and S. Pistorius, "Skin surface removal on breast microwave imagery usng wavelet multiscale products," Proceedings of the 5th Medical Imaging: Physiology, Function and Structure from Medical Images, 2006.


© Copyright 2010 EMW Publishing. All Rights Reserved