Vol. 21

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Reciprocal Invisible Cloak with Homogeneous Metamaterials

By Jingjing Yang, Ming Huang, Ya Lin Li, Tinghua Li, and Jing Sun
Progress In Electromagnetics Research M, Vol. 21, 105-115, 2011


Based on linear optical transformation method, a diamond shaped reciprocal cloak with perfect invisibility in a certain direction is proposed. Compared with traditional cloaks, the object hidden inside the reciprocal cloak is not blind and can receive information from the outer region. Moreover, the reciprocal cloak is constructed of nonsingular homogeneous material parameters with reduced anisotropy that is relatively easy for practical realization. Full wave simulations validate the performance of the cloak.


Jingjing Yang, Ming Huang, Ya Lin Li, Tinghua Li, and Jing Sun, "Reciprocal Invisible Cloak with Homogeneous Metamaterials," Progress In Electromagnetics Research M, Vol. 21, 105-115, 2011.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.

    2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.

    3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.

    4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, John Wiley & Sons Press, 2006.

    5. Yang, J. J., M. Huang, and J. Sun, "Double negative metamaterial sensor based on microring resonator," IEEE Sensor Journal, Vol. 11, No. 10, 2254-2259, 2011.

    6. Zheludev, N. I., "The road ahead for metamaterials," Science, Vol. 328, No. 5978, 582-853, 2010.

    7. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.

    8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.

    9. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.

    10. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, Vol. 8, No. 7, 568-571, 2009.

    11. Liu, X., C. Li, K. Yao, X. Meng, W. Feng, B. Wu, and F. Li, "Experimental veriofication broadband invisibility using a cloak based on inductor-capacitor networks," Appl. Phys. Lett., Vol. 95, No. 19, 191107, 2009.

    12. Alitalo, P. and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Materialstoday, Vol. 12, No. 3, 22-29, 2009.

    13. Yang, J. J., M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, "Metamaterial electromagnetic concentrators with arbitrary geometries," Optics Express, Vol. 17, No. 22, 19656-19661, 2009.

    14. Yu, G. X., T. J. Cui, and W. X. Jiang, "Design of transparent structure using metamaterial," J. Infrared Milli. Terahz. Waves, Vol. 30, No. 6, 633-641, 2009.

    15. Jiang, W. X., T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, "Shrinking an arbitrary object as one desires using metamaterials," Appl. Phys. Lett., Vol. 98, No. 20, 204101, 2011.

    16. Agarwal, K., X. Chen, L. Hu, H. Liu, and G. Uhlmann, "Polarization-invariant directional cloaking by transformation optics," Progress In Electromagnetics Research, Vol. 118, 415-423, 2011.

    17. Jiang, W. X., J. C. Yao, and T. J. Cui, "Anisotropic metamaterial devices," Materialstoday, Vol. 12, No. 2, 26-23, 2009.

    18. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, No. 5, 387-396, 2010.

    19. Dubinov, A. E. and L. A. Mytareva, "Invisible cloaking of material bodies using the wave flow method," Physics-Uspekhi, Vol. 53, No. 5, 455-479, 2010.

    20. Lai, Y., H. Y. Chen, Z. Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, No. 9, 093901, 2009.

    21. Yang, C. F., J. J. Yang, M. Huang, Z. Xiao, and J. H. Peng, "An external cloak with arbitrary cross section based on complementary medium and coordinate transformation," Optics Express, Vol. 19, No. 2, 1147-1156, 2011.

    22. Ma, H., S. Qu, Z. Xu, and J. Wang, "The open cloak," Appl. Phys. Lett., Vol. 94, No. 10, 103501, 2009.

    23. Han, T. C., C.-W. Qiu, and X. H. Tang, "Creating rigorous open cloaks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1839-1847, 2010.

    24. Yang, J. J., M. Huang, C. F. Yang, and J. Yu, "Reciprocal invisibility cloak based on complementary media," The European Physical Journal D, Vol. 61, No. 3, 731-736, 2011.

    25. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, No. 23, 233901, 2009.

    26. Alu, A. and N. Engheta, "Cloaking a receiving antenna or a sensor with plasmonic metamaterials," Metamaterials, Vol. 4, No. 2-3, 153-159, 2010.

    27. De Abajo, E. J. G., "Seeing without being seen," Physics, Vol. 2, 47, 2009.

    28. Wood, B., J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 77, No. 11, 013825, 2008.

    29. Feng, Y., X. Teng, Y. Chen, and T. Jiang, "Electromagnetic wave propagation in anisotropic metamaterials created by a set of periodic inductor-capacitor circuit networks," Phys. Rev. B, Vol. 72, No. 24, 245107, 2005.

    30. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, No. 2, 9794-9804, 2006.