Vol. 22
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-03
EMC Analysis of Antenna System on the Electrically Large Platform Using Parallel MoM with Higher-Order Basis Functions
By
Progress In Electromagnetics Research M, Vol. 22, 271-287, 2012
Abstract
Currently, more and more practical engineering applications place antenna system on the electrically large platform. This paper deals with the problem of antennas mounted on large platform from two aspects - radiation pattern and system electromagnetic compatibility (EMC). To achieve an accurate and effective computation, this paper applies Method of Moment (MoM) with Higher-order basis functions solver with large-scale parallel computation technique. And finally some real-life examples are presented to describe how to install antennas on the platform reasonably.
Citation
Ying Yan, Yu Zhang, Chang-Hong Liang, Daniel Garcia-Donoro, and Hui Zhao, "EMC Analysis of Antenna System on the Electrically Large Platform Using Parallel MoM with Higher-Order Basis Functions," Progress In Electromagnetics Research M, Vol. 22, 271-287, 2012.
doi:10.2528/PIERM11102401
References

1. Zhang, Y. and T. K. Sarkar, Parallel solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley, Hoboken, NJ, 2009.
doi:10.1002/9780470495094

2. Harrington, R. F., Field Computation by Moment Methods, IEEE Series on Electromagnetic Waves, New York, IEEE, 1993.
doi:10.1109/9780470544631

3. Zhang, Y., Parallel Computation in Electromagnetics, Xidian University Press, Xi'an, China, 2006.

4. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

5. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 5, 627-631, May 1991.
doi:10.1109/8.81490

6. Makarov, S., "MoM antenna simulations, with Matlab: RWG basis functions," IEEE Magazine on Antennas and Propagation, 100-107, 2001.
doi:10.1109/74.979384

7. Sendur, I. K. and L. Gurel, "Solution of radiation problems using the fast multipole method," IEEE International Symposium on Antennas and Propagation, Vol. 1, 88-91, 1997.

8. Jakobus, U., J. van Tonder, and M. Schoeman, "Advanced EMC modeling by means of a parallel MLFMM and coupling with network theory," IEEE International Symposium on Electromagnetic Compatibility, 1-5, 2008.

9. Liu, Z.-L., J. Yang, and C.-H. Liang, "The hybrid higher-order MoM-UTD formulation for electromagnetic radiation problems," 19th International Symposium on Electromagnetic Compatibility, 718-721, 2008.

10. Tap, K., T. Lertwiriyaprapa, P. H. Pathak, and K. Sertel, "A hybrid MoM-UTD analysis of the coupling between large multiple arrays on a large platform," IEEE International Symposium on Antennas and Propagation, Vol. 4A, 175-178, 2005.

11. Djordjevic, M. and B. M. Notaros, "Higher order hybrid method of moments - Physical optics modeling technique for radiation Higher order hybrid method of moments - Physical optics modeling technique for radiation," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318

12. Chen, M., Y. Zhang, X.-W. Zhao, and C.-H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 407-413, 2007.
doi:10.1109/TAP.2006.889814

13. Yan, Y., Y. Zhang, W. Zhao, X. Zhao, and T. K. Sarkar, "Analysis of antenna around target with dielectric coatings with hybrid MOM-PO technique," IEEE International Symposium on Antennas and Propagation, 3162-3165, 2011.

14. Jorgensen, E., P. Meincke, and O. Breinbjerg, "A hybrid PO- higher-order hierarchical MOM formulation using curvilinear geometry modeling," IEEE International Symposium on Antennas and Propagation, Vol. 4, 98-101, 2003.

15. Kolundzija, B. M. and B. D. Popovic, "Entire-domain galerkin method for analysis of metallic antennas and scatterers," IEE Proceedings - H, Vol. 40, No. 1, 1993.

16. Notaros, B. M., B. D. Popovic, and J. P. Weem, "Effcient large-domain MoM solutions to electrically large practical EM problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 151-159, Jan. 2001.
doi:10.1109/22.899977

17. Djordjevic, M. and B. M. Notaros, "Higher-order moment-method modeling of curved metallic antennas and scatterers," IEEE International Symposium on Antennas and Propagation, Vol. 4, 94-97, 2003.

18. Zhang, Y., M. Taylor, T. K. Sarkar, H. Moon, and M.-T. Yuan, "Solving large complex problems using a higher-order basis: Parallel in-core and out-of-core integral-equation solvers," IEEE Antennas and Propag. Mag., Vol. 50, No. 4, 13-30, Aug. 2008.
doi:10.1109/MAP.2008.4653660

19. Zhang, Y., M. Taylor, T. K. Sarkar, A. De, M.-T. Yuan, H. Moon, and C.-H. Liang, "Parallel in-core and out-of-core solution of electrically large problems using the RWG basis functions," IEEE Antennas and Propag. Mag., Vol. 50, No. 5, 84-94, Oct. 2008.
doi:10.1109/MAP.2008.4674713

20. Zhang, Y., T. K. Sarkar, M. Taylor, and H. Moon, "Solving MoM problems with million level unknowns using a parallel out- of-core solver on a high performance cluster," IEEE Antennas and Propagation Soc. Int. Symp., Charleston, SC, USA, Jun. 1-5, 2009.
doi:10.1109/MAP.2008.4674713

21., http://www.ssc.net.cn/.
doi:10.1109/MAP.2008.4674713