PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 22 > pp. 271-287

EMC ANALYSIS OF ANTENNA SYSTEM ON THE ELECTRICALLY LARGE PLATFORM USING PARALLEL MoM WITH HIGHER-ORDER BASIS FUNCTIONS

By Y. Yan, Y. Zhang, C.-H. Liang, D. Garcia-Donoro, and H. Zhao

Full Article PDF (1,572 KB)

Abstract:
Currently, more and more practical engineering applications place antenna system on the electrically large platform. This paper deals with the problem of antennas mounted on large platform from two aspects - radiation pattern and system electromagnetic compatibility (EMC). To achieve an accurate and effective computation, this paper applies Method of Moment (MoM) with Higher-order basis functions solver with large-scale parallel computation technique. And finally some real-life examples are presented to describe how to install antennas on the platform reasonably.

Citation:
Y. Yan, Y. Zhang, C.-H. Liang, D. Garcia-Donoro, and H. Zhao, "EMC Analysis of Antenna System on the Electrically Large Platform Using Parallel MoM with Higher-Order Basis Functions," Progress In Electromagnetics Research M, Vol. 22, 271-287, 2012.
doi:10.2528/PIERM11102401

References:
1. Zhang, Y. and T. K. Sarkar, Parallel solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley, Hoboken, NJ, 2009.
doi:10.1002/9780470495094

2. Harrington, R. F., Field Computation by Moment Methods, IEEE Series on Electromagnetic Waves, New York, IEEE, 1993.
doi:10.1109/9780470544631

3. Zhang, Y., Parallel Computation in Electromagnetics, Xidian University Press, Xi'an, China, 2006.

4. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

5. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 5, 627-631, May 1991.
doi:10.1109/8.81490

6. Makarov, S., "MoM antenna simulations, with Matlab: RWG basis functions," IEEE Magazine on Antennas and Propagation, 100-107, 2001.
doi:10.1109/74.979384

7. Sendur, I. K. and L. Gurel, "Solution of radiation problems using the fast multipole method," IEEE International Symposium on Antennas and Propagation, Vol. 1, 88-91, 1997.

8. Jakobus, U., J. van Tonder, and M. Schoeman, "Advanced EMC modeling by means of a parallel MLFMM and coupling with network theory," IEEE International Symposium on Electromagnetic Compatibility, 1-5, 2008.

9. Liu, Z.-L., J. Yang, and C.-H. Liang, "The hybrid higher-order MoM-UTD formulation for electromagnetic radiation problems," 19th International Symposium on Electromagnetic Compatibility, 718-721, 2008.

10. Tap, K., T. Lertwiriyaprapa, P. H. Pathak, and K. Sertel, "A hybrid MoM-UTD analysis of the coupling between large multiple arrays on a large platform," IEEE International Symposium on Antennas and Propagation, Vol. 4A, 175-178, 2005.

11. Djordjevic, M. and B. M. Notaros, "Higher order hybrid method of moments - Physical optics modeling technique for radiation Higher order hybrid method of moments - Physical optics modeling technique for radiation," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318

12. Chen, M., Y. Zhang, X.-W. Zhao, and C.-H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 407-413, 2007.
doi:10.1109/TAP.2006.889814

13. Yan, Y., Y. Zhang, W. Zhao, X. Zhao, and T. K. Sarkar, "Analysis of antenna around target with dielectric coatings with hybrid MOM-PO technique," IEEE International Symposium on Antennas and Propagation, 3162-3165, 2011.

14. Jorgensen, E., P. Meincke, and O. Breinbjerg, "A hybrid PO- higher-order hierarchical MOM formulation using curvilinear geometry modeling," IEEE International Symposium on Antennas and Propagation, Vol. 4, 98-101, 2003.

15. Kolundzija, B. M. and B. D. Popovic, "Entire-domain galerkin method for analysis of metallic antennas and scatterers," IEE Proceedings - H, Vol. 40, No. 1, 1993.

16. Notaros, B. M., B. D. Popovic, and J. P. Weem, "Effcient large-domain MoM solutions to electrically large practical EM problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 151-159, Jan. 2001.
doi:10.1109/22.899977

17. Djordjevic, M. and B. M. Notaros, "Higher-order moment-method modeling of curved metallic antennas and scatterers," IEEE International Symposium on Antennas and Propagation, Vol. 4, 94-97, 2003.

18. Zhang, Y., M. Taylor, T. K. Sarkar, H. Moon, and M.-T. Yuan, "Solving large complex problems using a higher-order basis: Parallel in-core and out-of-core integral-equation solvers," IEEE Antennas and Propag. Mag., Vol. 50, No. 4, 13-30, Aug. 2008.
doi:10.1109/MAP.2008.4653660

19. Zhang, Y., M. Taylor, T. K. Sarkar, A. De, M.-T. Yuan, H. Moon, and C.-H. Liang, "Parallel in-core and out-of-core solution of electrically large problems using the RWG basis functions," IEEE Antennas and Propag. Mag., Vol. 50, No. 5, 84-94, Oct. 2008.
doi:10.1109/MAP.2008.4674713

20. Zhang, Y., T. K. Sarkar, M. Taylor, and H. Moon, "Solving MoM problems with million level unknowns using a parallel out- of-core solver on a high performance cluster," IEEE Antennas and Propagation Soc. Int. Symp., Charleston, SC, USA, Jun. 1-5, 2009.
doi:10.1109/MAP.2008.4674713

21., , http://www.ssc.net.cn/.
doi:10.1109/MAP.2008.4674713


© Copyright 2010 EMW Publishing. All Rights Reserved