PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 109-121

EXPERIMENTAL ASSESSMENT OF MICROWAVE DIAGNOSTIC TOOL FOR ULTRA-WIDEBAND BREAST CANCER DETECTION

By A. Abu Bakar, D. Ireland, A. M. Abbosh, and Y. Wang

Full Article PDF (347 KB)

Abstract:
An ultra-wideband microwave imaging system that employs a heterogeneous breast phantom and covers the ultra-wideband (UWB) frequency range (3.1 GHz to 10.6 GHz) is presented. The platform scanning system allows monostatic and bistatic mode of operation. In this work, developed heterogeneous phantoms are used to mimic the realistic breast tissues. A utilized tapered slot antenna array allows for a high resolution hemispherical scan, achieved by rotating the imaged object on a turntable. Full design details of the scanning system and the utilized post-processing algorithm are explained. To validate the reliability of the presented system, the results of several imaging cases, including the challenging low dielectric contrast case, are presented.

Citation:
A. Abu Bakar, D. Ireland, A. M. Abbosh, and Y. Wang, "Experimental Assessment of Microwave Diagnostic Tool for Ultra-Wideband Breast Cancer Detection," Progress In Electromagnetics Research M, Vol. 23, 109-121, 2012.
doi:10.2528/PIERM11122102

References:
1. Jacobi, J. H., L. E. Larsen, and C. T. Hast, "Water-immersed microwave antennas and their application to microwave interrogation of biological targets," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, 70-78, 1979.
doi:10.1109/TMTT.1979.1129561

2. Meaney, P., S. Pendergrass, M. Fanning, and K. Paulsen, "Importance of using a reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 333-355, 2003.
doi:10.1163/156939303322235851

3. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array - Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

4. Klemm, M., I. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging," Radio Science, Vol. 43, RS6S06, 2008.

5. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

6. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

7. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

8. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

9. Bakar, A. A., A. Abbosh, P. Sharpe, M. E. Bialkowski, and Y. Wang, "Heterogeneous breast phantom for ultra wideband microwave imaging," Microwave and Optical Technology Letters, Vol. 53, 1595-1598, 2011.
doi:10.1002/mop.26046

10. Bakar, A. A., A. Abbosh, P. Sharpe, and M. Bialkowski, "Artificial breast phantom for microwave imaging modality," IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 385-388, 2010.
doi:10.1109/IECBES.2010.5742267

11. Campbell, A. and D. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Physics in Medicine and Biology, Vol. 37, 193, 1992.

12. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, 257-263, 1988.
doi:10.1109/10.1374

13. William, Q. H. L., T. Joines, and G. Ybarra, Electromagnetic Imaging of Biological Systems, 2006.

14. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6116, 2007.
doi:10.1088/0031-9155/52/20/002

15. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, and J. Harter, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2007.
doi:10.1088/0031-9155/52/20/002

16., "SEER cancer statistics review,", U. Centers for Disease Control and Prevention Division of Cancer Prevention and Control, 1975-2007..
doi:10.1088/0031-9155/52/20/002

17. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantoms for ultra wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

18. Wang, Y., A. Bakar, and M. Bialkowski, "Reduced size UWB uniplanar tapered slot antennas without and with corrugations," Microwave and Optical Technology Letters, Vol. 53, 830-836, 2011.
doi:10.1002/mop.25878

19. Ireland, D. and M. E. Bialkowski, "Microwave head imaging for stroke detection," Progress In Electromagnetics Research M, Vol. 21, 163-175, 2011.
doi:10.2528/PIERM11082907


© Copyright 2010 EMW Publishing. All Rights Reserved