Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Time-Dependent Nonlinear Theory and Numerical Simulation of 94 GHz Complex Cavity Gyrotron

By Jun Jian Ma, Xiao Fang Zhu, Xiao Lin Jin, Yu Lu Hu, Zhong-Hai Yang, Jian-Qing Li, and Bin Li
Progress In Electromagnetics Research M, Vol. 25, 141-155, 2012


A time-dependent nonlinear theory for complex cavity gyrotron is presented in this paper. The theory includes generalized telegrapher's equations and electron motion equations, which are deduced in detail. A calculation code for the self-consistent nonlinear beam-wave interaction is developed based on the presented theory. Using the code, a 94 GHz complex cavity gyrotron operating in TE021-TE031 modes is thoroughly studied. Numerical results show that an output power of 180 kW, about 36% efficiency is achieved with a 50 kV, 10 A electron beam at a focused magnetic field of 1.78 T and a beam velocity ratio of 1.65. The results from MAGIC simulation are also given and an output power of 192 kW, 38.4% efficiency is obtained. This tells the agreement with these two simulation codes.


Jun Jian Ma, Xiao Fang Zhu, Xiao Lin Jin, Yu Lu Hu, Zhong-Hai Yang, Jian-Qing Li, and Bin Li, "Time-Dependent Nonlinear Theory and Numerical Simulation of 94 GHz Complex Cavity Gyrotron," Progress In Electromagnetics Research M, Vol. 25, 141-155, 2012.


    1. Flyagin, V. A., A. V. Gaponov, M. I. Petelin, and V. K. yulpatov, "The gyrotron," IEEE Trans. on Microwave Theory and Techniques, Vol. 25, No. 6, 514-521, 1977.

    2. Chu, K. R., "The electron cyclotron maser," Reviews of Modern Physics, Vol. 76, No. 2, 489-540, 2004.

    3. Pavelyev, V. G. and S. E. Tsimring, "Open resonator. Inventor's certificate 616664," Byull. Izobret., Vol. 17, 240, USSR, 1979.

    4. Gaponov, A. V., V. A. Flyagin, A. L. Goldenberg, G. S. Nusi- novich, S. E. Tsimring, V. G. Usov, and S. N. Vlasov, "Power millimeter-wave gyrotrons," Int. J. Electronics, Vol. 51, No. 4, 277-302, 1981.

    5. Carmel, Y., K. R. Chu, M. Read, A. K. Ganguly, and D. Dialetis, "Realization of a stable and highly effcient gyrotron for controlled fusion research," Physical Review Letters, Vol. 50, No. 2, 112-116, 1983.

    6. Pavelyev, V. G., S. E. Tsimring, and V. E. Zapevalov, "Coupled cavities with mode conversion in gyrotrons," Int. J. Electronics, Vol. 63, No. 3, 379-391, 1987.

    7. Dumbrajs, O. and B. Jodicke, "Mode competition in a complex cavityfor gyrotrons," International Conference on Infrared and Millimeter Waves, 198-199, 1987.

    8. Niu, X.-J., L. Wang, and H.-F. Li, "Experimental investigation of 94 GHz second-harmonic gyrotrons," IEEE International Vacuum Electronics Conference (IVEC), 485-486, 2009.

    9. Barker, R. J. and E. Schamiloglu, High-power Microwave Sources and Technologies, IEEE, Piscataway, NJ, 2001.

    10. Goplen, B., L. Ludeking, D. Smithe, and G. Warren, "User configurable MAGIC code for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1-2, 54-86, 1995.

    11. Fliflet, A. W. and W. M. Manheimer, "Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal," Physical Review A, Vol. 39, No. 7, 3432-3443, 1989.

    12. Fliflet, A. W., R. C. Lee, S. H. Gold, W. M. Manheimer, and E. Ott, "Time-dependent multimode simulation of gyrotron oscillators," Physical Review A, Vol. 43, No. 11, 6166-6176, 1991.

    13. Nusinovich, G. S., "Linear theory of a gyrotron in weakly tapered external magnetic field," Int. J. Electronics, Vol. 64, No. 1, 127-135, 1988.

    14. Borie, E. and B. Jodicke, "Self-consistent theory of mode competition for gyrotrons," Int. J. Electronics, Vol. 72, No. 5-6, 721-744, 1992.

    15. Vlasov, A. N. and T. M. Antonsen, "Numerical solution of fields in lossy structures using MAGY," IEEE Trans. on Electron. Devices, Vol. 48, No. 1, 45-55, 2001.

    16. Fliflet, A. W., M. E. Read, K. R. Chu, and R. Seely, "A self-consistent field theory for gyrotron oscillators: Application to a low Q gyromonotron," Int. J. Electronics, Vol. 53, No. 6, 505-521, 1982.

    17. Levush, B., T. M. Antonsen, Jr., A. Bromborsky, W. Lou, and Y. Carmel, "Theory of relativistic backward wave oscillator with end reflections," IEEE Trans. Plasma Sci., Vol. 20, No. 3, 263-280, 1992.

    18. Guo, J. H., S. Yu, X. Li, and H. F. Li, "Study on nonlinear theory and code of beam-wave interaction for gyroklystron," J. Infrared Milli. Terahz. Waves, Vol. 32, 1382-1393, 2011.

    19. Niu, X.-J., L. Wang, and H.-F. Li, "94 GHz second-harmonic gyrotron with complex cavity," IEEE International Vacuum Electronics Conference (IVEC), 469-470, 2009.

    20. Aune, P., M. Fourrier, and G. Mourier, "A method for determining oscillation area in microwave tubes," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 6, 725-742, 1994.