PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 27 > pp. 129-150

A NOVEL FIELD SCATTERING FORMULATION FOR POLARIMETRIC SYNTHETIC APERTURE RADAR: 3D SCATTERING AND STOKES VECTORS

By R. Sabry

Full Article PDF (541 KB)

Abstract:
Conventional Far-field decomposition of the scattered electromagnetic (EM) field in the [EH] plane in terms of the horizontal and vertical components (i.e., h, v), introduces ambiguity for multi-static, multi-platform and/or scene-centric polarimetric synthetic aperture radar (SAR) image exploitation. This is due to the fact that a 2-dimensional (2D) vector field can not constitute a complete space capable of modeling 3-dimensional (3D) field transformations. To address this, extension of the Stokes vector, target scattering vectors and coherency parameters' analytic descriptions to 3D is explored and presented. The results are also applicable to compact polarimetry (CP) where mathematically consistent 3D Stokes parameters can be defined.

Citation:
R. Sabry, "A Novel Field Scattering Formulation for Polarimetric Synthetic Aperture Radar: 3D Scattering and Stokes Vectors," Progress In Electromagnetics Research M, Vol. 27, 129-150, 2012.
doi:10.2528/PIERM12061910

References:
1. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 498-518, Mar. 1996.
doi:10.1109/36.485127

2. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SARs," EEE Trans. Geosci. Remote Sens., Vol. 35, No. 1, 68-78, Jan. 1997.
doi:10.1109/36.551935

3. Lee, J. S., M. R. Grunes, T. L. Ainsworth, L. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification of polarimetric SAR images by applying target decomposition and complex Wishart distribution," EEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2249-2258, Sep. 1999.
doi:10.1109/36.789621

4. Pottier, E. and J. S. Lee, "Application of the H/A/α polarimetric decomposition theorem for unsupervised classi¯cation of fully polarimetric SAR data based on the Wishart distribution," Proc. CEOS Workshop, 335-340, Toulouse, France, Oct. 26-29, 1999.

5. Cameron, W. L., N. Youssef, and L. K. Leung, "Simulated polarimetric signatures of primitive geometrical shapes," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 3, 793-803, May 1996.
doi:10.1109/36.499784

6. Cameron, W. L. and H. Rais, "Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 12, 3506-3516, Dec. 2006.
doi:10.1109/TGRS.2006.879115

7. Cameron, W. L. and H. Rais, "Polarization symmetric scatterer metric space," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 4, 1097-1107, Apr. 2009.
doi:10.1109/TGRS.2008.2007962

8. Touzi, R. and F. Charbonneau, "Characterization of target symmetric scattering using polarimetric SARs," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 11, 2507-2516, Nov. 2002.
doi:10.1109/TGRS.2002.805070

9. Touzi, R., "Target scattering decomposition in terms of roll-invariant target parameters," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 1, 73-84, Jan. 2007.
doi:10.1109/TGRS.2006.886176

10. Touzi, R. , A. Deschamps, and G. Rother, "Phase of target scattering for wetland characterization using polarimetric C-band SAR," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 9, 3241-3261, Sep. 2009.
doi:10.1109/TGRS.2009.2018626

11. Vyplavin, P. I., K. A. Lukin, and N. N. Kolchigin, "Imaging with a noise SAR in the near-filed of the source," Telecommunications and Radio Engineering, Vol. 66, No. 17, 1521-1531, 2007.
doi:10.1615/TelecomRadEng.v66.i17.10

12. Cloude, S. R., "Lie groups in electromagnetic wave propagation and scattering," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 7, 947-974, 1992.

13. Schwinger, J., Classical Electrodynamics, Perseous Books, MA, 1998.

14. Tai, C. T., Generalized Vector and Dyadic Analysis, IEEE Press, 1992.

15. Raney, R. K., "Hybrid-polarity SAR architecture," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3397-3404, Nov. 2007.
doi:10.1109/TGRS.2007.895883

16. Raney, R. K., "Dual-polarized SAR and Stokes parameters," IEEE Geosci. Remote Sens. Lett., Vol. 3, No. 3, 317-319, Jul. 2006.
doi:10.1109/LGRS.2006.871746

17. Souyris, J.-C. and S. Mingot, "Polarimetry based on one transmitting and two receiving polarizations: The pi/4 mode," Proc. IGARSS, 629-631, Toronto, ON, Canada, Jun. 24-28, 2002.

18. Souyris, , J.-C., P. Imbo, R. Fjortoft, S. Mingot, and J.-S. Lee, "Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 3, 634-646, Mar. 2005.
doi:10.1109/TGRS.2004.842486

19. Collin, R. E., Antennas and Radiowave Propagation, McGraw-Hill, 1985.

20. Bell, D. C. and R. M. Naryanan, "Theoretical aspects of radar imaging using stohastic waveforms," IEEE Trans. on Signal Processing,, Vol. 49, No. 2, 394-400, 2001.
doi:10.1109/78.902122

21. Theron, I. P., E. K. Walton, and S. Gunawan, "Compact range radar cross-section measurements using a noise radar," IEEE Trans. Antennas Propagat., Vol. 46, 1285-1288, 1998.
doi:10.1109/8.719971

22. Jakowatz, C. V., et al., "Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach," Kluwer, 1996.


© Copyright 2010 EMW Publishing. All Rights Reserved