Vol. 29
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-02-01
Enhancing the Directivity of Phased Array Antennas Using Lens-Arrays
By
Progress In Electromagnetics Research M, Vol. 29, 41-64, 2013
Abstract
Small phased-array antennas can be combined with dielectric lenses or planar lens-arrays to form directive beam-steering system. The use of the lens increases the size of the radiating aperture and enhances the directivity of the phased array, but it also reduces its scan field of view. However, the effect can be controlled by properly designing the phase delay profile across the lens. This paper presents the formulation and methodology for designing modified lenses that can allow the desired scan angle. The utility and limitations of the proposed approach will be illustrated by considering several design examples. Simulations suggest that a directivity enhancement of > 2 dB and wide scan field of view (up to 45° off boresight) can be obtained for compact radiation systems employing small lenses and short separations between the lens and phased array. Larger directivity improvements in the range of tens of dB's are possible in systems with limited scanning capability by employing large lenses and greater phased array-lens separation. Ease of implementation and the ability of the proposed topology to adapt to the system requirements make this topology an interesting candidate for various millimeter-wave radio applications.
Citation
Abbas Abbaspour-Tamijani, Lisha Zhang, and Helen K. Pan, "Enhancing the Directivity of Phased Array Antennas Using Lens-Arrays," Progress In Electromagnetics Research M, Vol. 29, 41-64, 2013.
doi:10.2528/PIERM12062702
References

1. Koh, K.-J., J. W. May, and G. M. Rebeiz, "A millimeter-wave (40-34 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology," IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Vol. 44, 1498-1509, May 2009.
doi:10.1109/JSSC.2009.2017971

2. Chan, W. L. and J. R. Long, "A 60-GHz band 2 x 2 phased-array transmitter in 65-nm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Vol. 45, 2682-2695, Dec. 2010.
doi:10.1109/JSSC.2010.2077170

3. Cohen, E., C. Jakobson, S. Ravid, and D. Ritter, "A thirty two element phased-array transceiver at 60 GHz with RF-IF conversion block in 90nm flip chip CMOS process," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 457-460, 2010.

4. Reynolds, S., et al. "A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 461-464, 2010.

5. Valdes-Garcia, A., et al. "A SiGe BiCMOS 16-element phased-array transmitter for 60 GHz communications," IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 218-219, 2010.

6. Mailloux, R. J., L. Zahn, A. Martinez, and G. Forbes, "Grating lobe control in limited scan arrays," IEEE Trans. on Antennas and Propagation, Vol. 27, No. 1, 79-85, Jan. 1979.
doi:10.1109/TAP.1979.1142034

7. Fante, R. L., "System study of overlapped subarrayed scanning antennas," IEEE Trans. on Antennas and Propagation, Vol. 28, 668-679, Sep. 1980.
doi:10.1109/TAP.1980.1142391

8. Abbaspour-Tamijani, A. and K. Sarabandi, "An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays," IEEE Trans. on Microwave Antennas and Propagation, Vol. 51, 2193-2202, Sep. 2003.
doi:10.1109/TAP.2003.816331

9. Abbaspour-Tamijani, A., L. Zhang, and H. K. Pan, "Lens-enhanced phased array antenna system for high directivity beam-steering," IEEE International Symposium on Antennas and Propagation (APSURSI), 3275-3278, 2011.
doi:10.1109/APS.2011.5997234

10. Popovic, D. and Z. Popovic, "Multi-beam antennas with polarization and angle diversity," IEEE Trans. on Antennas and Propagation, Vol. 50, 651-657, May 2002.
doi:10.1109/TAP.2002.1011231

11. Abbaspour-Tamijani, A, K. Sarabandi, and G. M. Rebeiz, "A millimeter-wave bandpass filter-lens array," IET Microwaves, Antennas & Propagation, Vol. 1, 388-395, Apr. 2007.
doi:10.1049/iet-map:20050295

12. Cheng, C. C. and A. Abbaspour-Tamijani, "Low-loss lens-array for wide-scan millimeter-wave beam-steering," IEEE Antennas and Propagation Society International Symposium, 4393-4396, Honolulu, HI, Jun. 2007.

13. Abbaspour-Tamijani, A. and G. M. Rebeiz, "Low-loss bandpass antenna-filter-antenna arrays for applications in quasi-optical systems," European Microwave Conference, Digest of Papers,, 1027-1030, Paris, France, 2005.