PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 27 > pp. 255-269

A SIMPLE DESIGN OF MULTI BAND MICROSTRIP PATCH ANTENNAS ROBUST TO FABRICATION TOLERANCES FOR GSM, UMTS, LTE, AND BLUETOOTH APPLICATIONS BY USING GENETIC ALGORITHM OPTIMIZATION

By J. W. Jayasinghe, J. Anguera, and D. N. Uduwawala

Full Article PDF (866 KB)

Abstract:
Design of multiband antennas with low volume is of practical interest for the ever growing wireless communication industry. In this regard, the design of a small multi band microstrip patch antenna (MPA) for GSM900 (880-960 MHz), GSM1800 (1710-1880 MHz), GSM1900 (1850-1990 MHz), UMTS (1920-2170 MHz), LTE2300 (2305-2400 MHz), and Bluetooth (2400-2483.5 MHz) applications by using a genetic algorithm (GA) is proposed. The proposed GA method divides the overall patch area into different cells taking into account that cells have a small overlap area between them. This avoids optimized geometries with certain cells having only an infinitesimal connection to the rest of the patch. Therefore, the proposed method is robust for manufacturing. A shorting pin is also included for impedance matching. GA optimization combined with finite element method (FEM) is used to optimize the patch geometry, the feeding position and the shorting position. A prototype has been built showing good agreement with the simulated results. The optimized MPA has a footprint of 46 mm × 57 mm (0.138λ x 0.171λ at 900 MHz) and an air gap of 10 mm. It shows a reflection coefficient less than -10 dB at all six bands and can be useful for a base station antenna.

Citation:
J. W. Jayasinghe, J. Anguera, and D. N. Uduwawala, "A Simple Design of Multi Band Microstrip Patch Antennas Robust to Fabrication Tolerances for GSM, UMTS, LTE, and Bluetooth Applications by Using Genetic Algorithm Optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.
doi:10.2528/PIERM12102705

References:
1. Balanis, C. A., Modern Antenna Handbook, 1st Ed., John Wiley & Sons, Inc., 2008.
doi:10.1002/9780470294154

2. Balanis, C. A., Antenna Theory and Design, 2nd Ed., John Willey & sons, Inc., 1997.

3. Pozar, D. and D. Schaubert, Microstrip Antennas: The Analysis and Design of Microstrip Antenna Arrays, Wiley-IEEE Press, 1995.

4. Wong, K. L., "Compact and Broadband Microstrip Antennas," John Wiley & Sons, Inc., 2002.

5. Anguera, J., "Fractal and broad-band techniques on miniature, multifrequency, and high-directivity microstrip patch antennas,", Ph.D. Dissertation at Universitat Politμecnica of Catalunya,Barcelona, Spain, Jul. 2003 .

6. Anguera, J. , C. Puente, C. Borja, and J. Soler, "Dual frequency broadband stacked microstrip antenna using a reactive loading and a fractal-shaped radiating edge," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 309-312, 2007.
doi:10.1109/LAWP.2007.891523

7. Anguera, J., C. Puente, C. Borja, N. Delbene, and J. Soler, "Dual frequency broadband stacked microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 36-39, 2003.
doi:10.1109/LAWP.2003.811325

8. Anguera, J., G. Font, C. Puente, C. Borja, and J. Soler, "Multifrequency microstrip patch antenna using multiple stacked elements ," IEEE Microwave and Wireless Component Letters,, Vol. 13, No. 3, Mar. 2003.
doi:10.1109/LMWC.2003.810126

9. Pan, S. C. and K. L. Wong, "Dual-frequency triangular microstrip antenna with a shorting pin," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 1889-1891, 1997.
doi:10.1109/8.650213

10. Pedra, A. C. O. , G. Bulla, P. Serafini, and A. A. A. de Salles, "Shorting pins application in wide-band E-shaped patch antenna," SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC 2009), 229-234, 2009.
doi:10.1109/IMOC.2009.5427591

11. Picher, C., J. Anguera, A. Cabedo, C. Puente, and S. Kahng, "Multiband handset antenna using slots on the ground plane considerations to facilitate the integration of the feeding transmission line," Progress In Electromagnetics Research, Vol. 7, 95-109, 2009.

12. Cabedo, A., J. Anguera, C. Picher, M. Ribo, C. Puente, and , "Multi-band handset antenna combining a PIFA, slots, and ground plane modes," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2526-2533, Sep. 2009.
doi:10.1109/TAP.2009.2027039

13. Kwak, W., S. O. Park, and J. S. Kim, "A folded planar inverted-F antenna for GSM/DCS/bluetooth Triple-band application," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 18-21, 2006.
doi:10.1109/LAWP.2005.863617

14. Bhatti, R. A., Y. S. Shin, N. Nguyen, and S. Park, "Design of novel multiband planer inverted-F antenna for mobile terminals," Proceedings of iWAT, 530-533, Chiba, Japan, 2008.

15. Zhang, X. and A. Salo, "Design of novel wideband planer inverted-F antenna for mobile application," PIERS Proceedings, 1191-1195, Beijing, China, Mar. 23-27, 2009.

16. Maci, S. and G. B. Gentili, "Dual frequency patch antennas," IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, Dec. 1997.
doi:10.1109/74.646798

17. Lee, C. S., V. Nalbandian, and F. Schwering, "Planar dual-band microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 892-894, Aug. 1995.
doi:10.1109/8.402213

18. Daniel, A. E. and G. Kumar, "Tuneable dual and triple stub loaded," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1026-1039, Jul. 2000.

19. Wang, B. F. and Y. T. Lo, "Microstrip antennas for dual-frequency operation," IEEE Transactions on Antennas and Propagation, Vol. 32, 938-943, Sep. 1984.
doi:10.1109/TAP.1984.1143459

20. Wang, Y. J. and C. K. Lee, "Design of dual-frequency microstrip patch antennas and application for IMT-2000 mobile handsets," Progress In Electromagnetics Research, Vol. 36, 265-278, 2002.
doi:10.2528/PIER02022102

21. Luk, K. M., C. H. Lai, and K. F. Lee, "Wideband L-probe-fed patch antenna with dual-band operation for GSM/PCS base stations," Electron. Lett., Vol. 35, 1123-1124, Jul. 8, 1999.

22. Li, P., K. M. Luk, and K. L. Lau, "A dual-feed dual-band L-probe patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2321-2323, 2005.
doi:10.1109/TAP.2005.850761

23. Huang, Y. H., Q. Z. Liu, and S. G. Zhou, "A wideband and dual frequency three dimensional transition fed circular patch antenna for indoor base station application," Progress In Electromagnetics Research Letters, Vol. 11, 47-54, 2009.
doi:10.2528/PIERL09080207

24. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1606-1614, Oct. 1999.
doi:10.1109/8.805906

25. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, 1st Ed., John Wiley & Sons, Inc., 1999.

26. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, Aug. 7-21, 1997.

27. Jayasinghe, J. M. J. W. and D. N. Uduwawala, "Design of broadband patch antennas using genetic algorithm optimization," 5th International Conference on Industrial and Information Systems, 60-65, 2010.
doi:10.1109/ICIINFS.2010.5578733

28. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization application for patch antenna design," IEEE Transactions on Antennas and Propagation, Vol. 52, 2424-2435, 2004.
doi:10.1109/TAP.2004.834071

29. Jayasinghe, J. M. J. W., D. N. Uduwawala, and J. Anguera, "Design of dual band patch antennas for cellular communications by genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 1, 26-43, 2012.

30. Jayasinghe, J. M. J. W. a, D. N. Uduwawala, and , "Novel quad-band patch antenna design for wireless communications in 2.4, 5.2, 5.6 and 5.8 GHz bands using genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 4, 466-471, 2012.

31. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461

32. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128


© Copyright 2010 EMW Publishing. All Rights Reserved