Vol. 28
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-19
Design of Planar EBG Structures Using Cuckoo Search Algorithm for Power/Ground Noise Suppression
By
Progress In Electromagnetics Research M, Vol. 28, 145-155, 2013
Abstract
This paper deals with the application of a meta-heuristic optimization algorithm, namely the Cuckoo Search Algorithm in design of the Electromagnetic band gap (EBG) structures. These EBG structures are employed for the purpose of suppressing power/ground noise in printed circuit boards. A design example of 2D planar EBG structure in the specified frequency band is presented and implemented. The measured results are found to be in good agreement with the simulation as well as the analytical results.
Citation
Priya Ranjan Pani, Raj Kumar Nagpal, Rakesh Malik, and Nisha Gupta, "Design of Planar EBG Structures Using Cuckoo Search Algorithm for Power/Ground Noise Suppression," Progress In Electromagnetics Research M, Vol. 28, 145-155, 2013.
doi:10.2528/PIERM12121108
References

1. Shahparnia , S. and O. M. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Transactions on Electromagn. Compat., Vol. 46, No. 4, 580-587, 2004.
doi:10.1109/TEMC.2004.837671

2. Paulis, F. D. and A. Orlandi, "Signal integrity analysis of single-ended and differential striplines in presence of EBG planar structures," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 9, 554-557, 2009.
doi:10.1109/LMWC.2009.2027062

3. Swaminathan, M. and A. E. Engin, Power Integrity Modeling and Design for Semiconductors and Systems, Prentice-Hall, Englewood Cliffs, NJ, 2007.

4. Paulis, F. D., L. Raimondo, A. Orlandi, L. Ren, and J. Fan, "Equivalent circuit models for evaluation of bandgap limits for planar electromagnetic bandgap structures ," IEEE International Symposium on Electromagnetic Compatibility (EMC), 770-775, 2010.

5. Raimondo, L., F. D. Paulis, and A. Orlandi, "A simple and efficient design procedure for planar electromagnetic bandgap structures on printed circuit boards," IEEE Transactions on Electromagn. Compat., Vol. 53, No. 2, 482-490, 2011.
doi:10.1109/TEMC.2010.2051549

6. Computer Simulation Technology CST Studio Suite., 2011, Available: http://www.cst.com/.

7. Lei, G. T., R. W. Techentin, and B. K. Gilbert, "High-frequency characterization of power/ground-plane structures," IEEE Trans. on Microw. Theory Tech., Vol. 47, No. 5, 562-569, 1999.
doi:10.1109/22.763156

8. Pozar, D. M., Microwave Engineering,, 3rd Ed., John Wiley & Sons, New York, 2004.

9. Yang, X. S. and S. Deb, "Cuckoo search via levy flights," World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), 210-214, 2009.
doi:10.1109/NABIC.2009.5393690

10. Yang, X. S. and S. Deb, "Engineering optimization by cuckoo search," Int. J. Mathematical Modeling and Numerical Optimisation, Vol. 1, No. 4, 330-343, 2010.
doi:10.1504/IJMMNO.2010.035430

11. Kim, T. H., M. Swaminathan, A. E. Engin, and B. J. Yang, "Electromagnetic band gap synthesis using genetic algorithms for mixed signal applications," IEEE Trans. on Adv. Packg., Vol. 32, No. 1, 13-25, 2009.
doi:10.1109/TADVP.2008.2005841

12. Kovacs, P. and Z. Raida, "Global evolutionary algorithms in the design of electromagnetic band gap structures with suppressed surface waves propagation," Radio Engineering, Vol. 19, 122-128, 2010.

13. Civicioglu, P. and E. Besdok, "A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms," Artificial Intelligence Review, 2011, DOI 10.1007/s10462-011-9276-0.

14. Tripathi, J. N., N. K. Chhabra, R. K. Nagpal, R. Malik, and J. Mukherjee, "Damping the cavity-mode anti-resonances' peaks on a power plane by swarm intelligence algorithms," IEEE International Symposium on Circuits and Systems (ISCAS), 361-364, 2012.

15. Pani, P. R., R. K. Nagpal, R. Malik, and N. Gupta, "Mitigation of simultaneous switching noise on EBG planes using firefly algorithm," International Conference on Communication, Information & Computing Technology (ICCICT), 1-4, 2012.