PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 201-211

MULTICONDUCTOR REDUCTION METHOD FOR MODELING CROSSTALK OF COMPLEX CABLE BUNDLES IN THE VICINITY OF A 60 DEGREE CORNER

By J. Yan, Z. Li, L. L. Liu, and C. Q. Gu

Full Article PDF (398 KB)

Abstract:
This paper presents a multiconductor reduction method for modeling electromagnetic crosstalk of complex cable bundles in the vicinity of a 60 degree corner. Based on the image theory and wide separation assumption, the per-unit-length parameters of the cable bundle can be obtained analytically. A modified six-step procedure is established to define the electrical and geometrical characteristics of the reduced cable bundle model compared with the original equivalent cable bundle method (ECBM). Numerical simulations are performed to demonstrate the viability and effectiveness of the method. This work can find wide applications in real environments.

Citation:
J. Yan, Z. Li, L. L. Liu, and C. Q. Gu, "Multiconductor Reduction Method for Modeling Crosstalk of Complex Cable Bundles in the Vicinity of a 60 Degree Corner," Progress In Electromagnetics Research M, Vol. 28, 201-211, 2013.
doi:10.2528/PIERM12121904

References:
1. Junior, W. V., M. H. Amaral, and A. Raizer, "EMC management: How to compare electromagnetic environmental measurements and equipment immunity levels," Progress In Electromagnetics Research Letters, Vol. 18, 165-177, 2010.
doi:10.2528/PIERL10092011

2. Sharaa, I., D. N. Aloi, and H. P. Gerl, "EMC model-based test-setup of an electrical system," Progress In Electromagnetics Research B, Vol. 11, 133-154, 2009.
doi:10.2528/PIERB08110307

3. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.

4. Roy, A., S. Ghosh, and A. Chakraborty, "Simple crosstalk model of three wires to predict nearend and farend crosstalk in an EMI/EMC environment to facilitate EMI/EMC modeling," Progress In Electromagnetics Research B, Vol. 8, 43-58, 2008.
doi:10.2528/PIERB08050503

5. Lin, D.-B., F.-N. Wu, W. S. Liu, C. K. Wang, and H.-Y. Shih, "Crosstalk and discontinuities reduction on multi-module memory bus by particle swarm optimization," Progress In Electromagnetics Research, Vol. 121, 53-74, 2011.
doi:10.2528/PIER11080302

6. Andrieu, , G., L. Kone, F. Bocquet, B. Demoulin, and J. P. Parmantier, "Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications," IEEE Trans. on Electromagn. Compat.,, Vol. 50, No. 1, 175-184, Feb. 2008.
doi:10.1109/TEMC.2007.911914

7. Andrieu, G., A. Reineix, X. Bunlon, J. P. Parmantier, L. Kone, and B. Demoulin, "Extension of the `equivalent cable bundle method' for modeling electromagnetic emissions of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 1, 108-118, Feb. 2009.
doi:10.1109/TEMC.2008.2007803

8. Andrieu, G., X. Bunlon, L. Kone, J. P. Parmantier, B. Demoulin, and A. Reineix, "The 'equivalent cable bundle method': An efficient multiconductor reduction technique to model industrial cable networks," New Trends and Developments in Automotive System Engineering, InTech, Jan. 2011.

9. Li, Z., L. L. Liu, and C. Q. Gu, "Generalized equivalent cable bundle method for modeling EMC issues of complex cable bundle terminated in arbitrary loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601

10. Li, Z. , Z. J. Shao, J. Ding, Z. Y. Niu, and C. Q. Gu, "Extension of the 'equivalent cable bundle method' for modeling crosstalk of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 4, 1040-1049, Nov. 2011.
doi:10.1109/TEMC.2011.2146258

11. Li, Z., L. L. Liu, J. Ding, M. H. Cao, Z. Y. Niu, and C. Q. Gu, "A new simplification scheme for crosstalk prediction of complex cable bundles within a cylindrical cavity," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 4, 940-943, Aug. 2012.
doi:10.1109/TEMC.2012.2200042

12. Liu, Y., L. Tong, W. Zhu, Y. Tian, and B. Gao, "Impedance measurements of nonuniform transmission lines in time domain using an improved recursive multiple reflection computation method," Progress In Electromagnetics Research, Vol. 117, , 149-164, 2011.

13. Miri, M. and M. McLain, "Electromagnetic radiation from unbalanced transmission lines," Progress In Electromagnetics Research B, Vol. 43, 129-150, 2012.

14. Yeh, Z.-Y. and Y.-C. Chiang, "A miniature CPW balun constructed with length-reduced 3 dB couples and a short redundant transmission line," Progress In Electromagnetics Research, Vol. 117, 195-208, 2011.

15. Deng, P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

16. Koo, S.-K., H.-S. Lee, and Y. B. Park, "Crosstalk reduction effect of asymmetric stub loaded lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1156-1167, 2011.
doi:10.1163/156939311795762204

17. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, New York, 1994.

18. Huang, C.-C., "Analysis of multiconductor transmission lines with nonlinear terminations in frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 8, 1069-1083, 2005.
doi:10.1163/156939305775526142


© Copyright 2010 EMW Publishing. All Rights Reserved