Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-30

Design of a Low Sidelobe 4D Planar Array Including Mutual Coupling

By Quanjiang Zhu, Shiwen Yang, Ruilin Yao, and Zai-Ping Nie
Progress In Electromagnetics Research M, Vol. 31, 103-116, 2013
doi:10.2528/PIERM13022201

Abstract

An efficient approach is presented for the design of a low sidelobe four-dimensional (4D) planar antenna array, taking into account mutual coupling and platform effect. The approach is based on the combination of the active element patterns and the differential evolution (DE) algorithm. Different from linear and circular arrays, the mutual coupling compensation in a planar array is more complicated since it requires numerous data of the active element patterns in different azimuth planes. In order to solve this problem, a useful interface program is developed to get these data from commercial software HFSS automatically. Also different from conventional low sidelobe arrays with tapered amplitude excitations, the low sidelobe in the 4D array is realized using time-modulation technique under uniform static amplitude and phase conditions. The DE algorithm is used to optimize the time sequences which are equivalent to the complex excitations in conventional arrays. Both computed results and simulated results in HFSS show that a -30 dB sidelobe pattern can be synthesized in a 76-element planar array with an octagonal ground plane and a radome, thus verifying the proposed approach.

Citation


Quanjiang Zhu, Shiwen Yang, Ruilin Yao, and Zai-Ping Nie, "Design of a Low Sidelobe 4D Planar Array Including Mutual Coupling," Progress In Electromagnetics Research M, Vol. 31, 103-116, 2013.
doi:10.2528/PIERM13022201
http://www.jpier.org/PIERM/pier.php?paper=13022201

References


    1. Shanks, H. E. and R. W. Bickmore, "Four-dimensional electromagnetic radiators," Can. J. Phys., Vol. 37, 263-275, Mar. 1959.
    doi:10.1139/p59-031

    2. Kummer, W. H., A. T. Villeneuve, T. S. Fong, and F. G. Terrio, "Ultra-low sidelobes from time-modulated arrays," IEEE Trans. Antennas Propag., Vol. 11, 633-639, Nov. 1963.
    doi:10.1109/TAP.1963.1138102

    3. Yang, S., Y. B. Gan, and A. Qing, "Sideband suppression in time-modulated linear arrays by the differential evolution algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 1, 173-175, Dec. 2002.
    doi:10.1109/LAWP.2002.807789

    4. Yang, S., Y. B. Gan, and P. K. Tan, "Comparative study of low sidelobe time modulated linear arrays with different time schemes," Journal of Electromagnetic Waves and Application, Vol. 18, No. 11, 1443-1458, 2004.
    doi:10.1163/1569393042954910

    5. Yang, S., Y. Chen, and Z. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
    doi:10.2528/PIER09092507

    6. Pal, S., S. Das, and A. Basak, "Design of time-modulated linear arrays with a multi-objective optimization approach," Progress In Electromagnetics Research B, Vol. 23, 83-107, 2010.
    doi:10.2528/PIERB10052401

    7. Rocca, P., L. Poli, G. Oliveri, and A. Massa, "A multi-stage approach for the synthesis of sub-arrayed time modulated linear arrays," IEEE Trans. Antennas Propag., Vol. 59, 3246-3254, 2011.
    doi:10.1109/TAP.2011.2161535

    8. Zhu, Q., S. Yang, L. Zheng, and Z. Nie, "A pattern synthesis approach in four dimensional antenna arrays with practical element models," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2274-2286, 2011.
    doi:10.1163/156939311798147105

    9. Chen, Y., S. Yang, and Z. Nie, "Synthesis of satellite footprint patterns from time-modulated planar arrays with very low dynamic range ratios," nt. J. Numer. Model, Vol. 21, 493-506, 2008.
    doi:10.1002/jnm.684

    10. Poli, L., P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays analysis and optimization of the sideband radiations," IET Microw. Antennas Propag., Vol. 4, No. 9, 1165-1171, 2010.
    doi:10.1049/iet-map.2009.0379

    11. Rocca, P., L. Poli, G. Oliveri, and A. Massa, "Synthesis of time-modulated planar arrays with controlled harmonic radiations," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 827-838, 2010.
    doi:10.1163/156939310791036304

    12. Li, G., S. Yang, Y. Chen, and Z. Nie, "A novel electronic beam steering technique in time modulated antenna arrays," Progress In Electromagnetics Research, Vol. 97, 391-405, 2009.
    doi:10.2528/PIER09072602

    13. Poli, L., P. Rocca, G. Oliveri, and A. Massa, "Harmonic beamforming in time-modulated linear arrays," IEEE Trans. Antennas Propag., Vol. 59, 2538-2545, 2011.
    doi:10.1109/TAP.2011.2152323

    14. Tennant, A., "Experimental two-element time-modulated direction finding array," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 986-988, Mar. 2010.
    doi:10.1109/TAP.2009.2039301

    15. Hong, T., M. Song, and Y. Liu, "RF directional modulation technique using a switched antenna array for communication and direction-finding applications," Progress In Electromagnetics Research, Vol. 120, 195-213, 2011.

    16. Rocca, P., L. Manica, L. Poli, and A. Massa, "Synthesis of compromise sum-difference arrays through time-modulation," IET Radar Sonar Navig., Vol. 3, 630-637, 2009.
    doi:10.1049/iet-rsn.2009.0058

    17. Rocca, P., L. Poli, L. Manica, and A. Massa, "Synthesis of monopulse time-modulated planar arrays with controlled sideband radiation," IET Radar Sonar Navig., Vol. 6, 432-442, 2012.
    doi:10.1049/iet-rsn.2012.0005

    18. Poli, L., P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," IET Microw. Antennas Propag., Vol. 5, 157-166, 2011.
    doi:10.1049/iet-map.2010.0015

    19. Rocca, P., L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through time-modulated linear arrays," EEE Antennas Wireless Propag. Lett., Vol. 11, 101-104, 2012.
    doi:10.1109/LAWP.2012.2183849

    20. Hong, T., M. Song, and Y. Liu, "RF directional modulation technique using a switched antenna array for physical layer secure communication applications," Progress In Electromagnetics Research, Vol. 116, 363-379, 2011.

    21. Kelley, D. F. and W. L. Stutzman, "Array antenna pattern modeling methods that include mutual coupling effects," IEEE Trans. Antennas Propag., Vol. 41, No. 12, 1625-1632, Dec. 1993.
    doi:10.1109/8.273305

    22. Oliveri, G., L. Manica, and A. Massa, "On the impact of mutual coupling effects on the PSL performances of ADS thinned arrays," Progress In Electromagnetics Research B, Vol. 17, 293-308, 2009.
    doi:10.2528/PIERB09082703

    23. Darwood, P., P. N. Fletcher, and G. S. Hilton, "Mutual coupling compensation in small planar array antennas," IEE Proc. --- Microw. Antennas Propag., Vol. 145, No. 1, 1-6, Feb. 1998.
    doi:10.1049/ip-map:19981450

    24. Yuan, T., L. Li, M. Leong, J. Li, and N. Yuan, "Efficient analysis and design of finite phased arrays of printed dipoles using fast algorithm: Some case studies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 737-754, 2007.
    doi:10.1163/156939307780749057

    25. Pozar, D. M., "The active element pattern," IEEE Trans. Antennas Propag., Vol. 42, No. 8, 1176-1178, Aug. 1994.
    doi:10.1109/8.310010

    26. Yang, S. and Z. Nie, "Mutual coupling compensation in time modulated linear antenna arrays," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4182-4185, Dec. 2005.
    doi:10.1109/TAP.2005.860000

    27. Bernardi, G., M. Felaco, and M. D'Urso, "A simple strategy to tackle mutual coupling and platform effects in surveillance systems," Progress In Electromagnetics Research C, Vol. 20, 1-15, 2011.

    28. He, Q. and B. Wang, "Design of microstrip array antenna by using active element pattern technique combining with Taylor synthesis method," Progress In Electromagnetics Research, Vol. 80, 63-76, 2008.
    doi:10.2528/PIER07103006

    29. He, Q., B. Wang, and W. Shao, "Radiation pattern calculation for arbitrary conformal arrays that include mutual-coupling effects," IEEE Antennas Propag. Magazine, Vol. 52, No. 2, 57-63, Apr. 2010.
    doi:10.1109/MAP.2010.5525566

    30. Pozar, D. M., "A relation between the active input impedance and the active element pattern of a phased array," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2486-2489, Sep. 2003.
    doi:10.1109/TAP.2003.816302

    31. Kelley, D. F., "Relationships between active element patterns and mutual impedance matrices in phased array antennas," Proc. IEEE Antennas Propag. Symp., 524-527, 2002.

    32. Pal, S., B.-Y. Qu, S. Das, and P. N. Suganthan, "Optimal synthesis of linear antenna arrays with multi-objective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010.

    33. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

    34. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas Propag. Magazine, Vol. 53, 38-49, 2011.
    doi:10.1109/MAP.2011.5773566

    35. Zhu, X., S. Yang, and Z. Nie, "Full-wave simulation of time modulated linear antenna arrays in frequency domain," IEEE Trans. Antennas Propag., Vol. 56, No. 5, 1479-1482, 2008.
    doi:10.1109/TAP.2008.922701

    36. Poli, L., P. Rocca, L. Manica, and A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," IET Microw. Antennas Propag., Vol. 4, No. 9, 1157-1164, 2010.
    doi:10.1049/iet-map.2009.0042