Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-06-11

A Methodology for the Design of Microwave Systems and Circuits Using an Evolutionary Algorithm

By Massimo Donelli, Md. Rukanuzzaman, and Carlos E. Saavedra
Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013
doi:10.2528/PIERM13041607

Abstract

This work presents a methodology for the development of microwave systems and circuits. Starting from the system decomposition, the proposed method is aimed at estimates the requirements of each component of the system taking into account the effects on the whole system and the interactions with the others microwave components. The obtained requirements are then used to design or optimize each device with standard design methodologies or CAD tools. The problem is recast as an optimization one by defining a suitable cost function able to take into account the interactions between all the components of the system. The cost function is then minimized with an evolutionary optimization technique, namely the particle swarm optimizer. The obtained preliminary results, concerning the design of a broad-band bidirectional amplifier, demonstrate the potentialities of the proposed approach.

Citation


Massimo Donelli, Md. Rukanuzzaman, and Carlos E. Saavedra, "A Methodology for the Design of Microwave Systems and Circuits Using an Evolutionary Algorithm," Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013.
doi:10.2528/PIERM13041607
http://www.jpier.org/PIERM/pier.php?paper=13041607

References


    1. Pozar, D., Microwave Engineering, John Wiley & Sons, New York, 1998.

    2. Kumar, S., C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 11, 2517-2523, Nov. 1995.
    doi:10.1109/22.473172

    3. Wincza, K. and S. Gruszczynski, "Miniaturized quasi-lumped coupled-line single section and multisection directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 2924-2931, Nov. 2010.

    4. Chiang, Y. C. and C. Y. Chen, "Design of a wideband lumped-element 3-dB quadrature coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 9, 476-479, 2001.
    doi:10.1109/22.910551

    5. Caorsi, S., M. Donelli, A. Massa, and M. Raffetto, "A parallel implementation of an evolutionary-based automatic tool for microwave circuit synthesis: Preliminary results," Microwave and Optical Technology Letters, Vol. 35, No. 3, Nov. 2002.

    6. Azaro, R., F. De Natale, M. Donelli, and A. Massa, "PSO-based optimization of matching loads for lossy transmission lines," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1485-1487, 2006.
    doi:10.1002/mop.21738

    7. Donelli, M., R. Azaro, A. Massa, and M. Raffetto, "Unsupervised synthesis of microwave components by means of an evolutionary-based tool exploiting distributed computing resources," Progress In Electromagnetics Research, Vol. 56, 93-108, 2006.
    doi:10.2528/PIER05010901

    8. Robinson, J., S. Sinton, and Y. Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna," IEEE Antennas Propagat. Soc. Int. Symp. Dig., Vol. 1, 314-317, 2002.

    9. Boeringer, D. and D. Werner, "Efficiency-constrained particle swarm optimization of a modified Bernstein polynomial for conformal array excitation amplitude synthesis," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2662-2671, 2005.
    doi:10.1109/TAP.2005.851783

    10. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, May 2005.
    doi:10.1109/TMTT.2005.847068

    11. Azaro, R., M. Donelli, M. Benedetti, P. Rocca, and A. Massa, "A GSM signals based positioning technique for mobile applications," Microwave and Optical Technology Letters, Vol. 50, No. 4, 2128-2130, 2008.
    doi:10.1002/mop.23568

    12. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
    doi:10.1109/TAP.2004.823969

    13. Kennedy, J., R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

    14. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
    doi:10.1109/TAP.2004.823969

    15. Clerc, M. and J. Kennedy, "The particle swarm explosion, stability, and convergence in a multidimensional complex space," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, 58-73, 2012.
    doi:10.1109/4235.985692

    16. Donelli, M., R. Azaro, F. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 888-898, Mar. 2006.
    doi:10.1109/TAP.2006.869912

    17. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3459-3468, 2005.
    doi:10.1109/TAP.2005.858842

    18. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multi-objective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 556-567, 2007.
    doi:10.1109/TAP.2007.891552

    19. Adly, A. and S. Abd-El-Hafiz, "Using the particle swarm evolutionary approach in shape optimization and field analysis of devices involving nonlinear magnetic media," IEEE Transactions on Magnetics, Vol. 42, No. 10, 3150-3152, 2006.
    doi:10.1109/TMAG.2006.880103

    20. Ho, S., S. Yang, G. Ni, and H. Wong, "A particle swarm optimization method with enhanced global search ability or design optimizations of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1107-1110, 2006.
    doi:10.1109/TMAG.2006.871426

    21. Genovesi, S., A. Monorchio, R. Mittra, and G. Manara, "A subboundary approach for enhanced particle swarm optimization and its application to the design of artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 766-770, 2007.
    doi:10.1109/TAP.2007.891559

    22. Azaro, R., F. De Natale, M. Donelli, and E. Zeni, "Optimized design of a multi-function/multi-band antenna for automotive rescue systems," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 897-904, Feb. 2006.
    doi:10.1109/TAP.2005.863387

    23. Azaro, R., M. Donelli, D. Franceschini, E. Zeni, and A. Massa, "Optimized synthesis of a miniaturized SARSAT band pre-fractal antenna," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2205-2207, 2006.
    doi:10.1002/mop.21922

    24. Fimognari, L., M. Donelli, A. Massa, and R. Azaro, "A planar electronically reconfigurable wi-fi band antenna based on a parasitic microstrip structure," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 623-626, 2007.

    25. Azaro, R., F. de Natale, E. Zeni, M. Donelli, and A. Massa, "Synthesis of a pre-fractal dual-band monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, Dec. 2006.
    doi:10.1109/LAWP.2006.880695

    26. Azaro, R., F. De Natale, E. Zeni, M. Donelli, and A. Massa, "Synthesis of a pre-fractal dual-band monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, Dec. 2006.
    doi:10.1109/LAWP.2006.880695

    27. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4{3.6 GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 116-119, Dec. 2006.
    doi:10.1109/LAWP.2006.872427

    28. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
    doi:10.2528/PIER11052303

    29. lker, S., "Particle swarm optimization application to microwave circuits," Microwave and Optical Technology Letters, Vol. 50, No. 5, 1333-1336, 2008.
    doi:10.1002/mop.23369

    30. Ninomiya, H., "A hybrid global/local optimization technique for robust training of microwave neural network models," IEEE Congress on Evolutionary Computation, CEC 2009, Art. No. 4983315, 2956-2962, 2009.

    31. Afshinmanesh, F., A. Marandi, and M. Shahabadi, "Design of a single-feed dual-band dual-polarized printed microstrip antenna using a Boolean particle swarm optimization," IEEE Transactions on Antennas and Propagation,, Vol. 56, No. 7, 1845-1852, 2006.
    doi:10.1109/TAP.2008.924684

    32. Akdagli, A. and K. Guney, "New wide-aperture-dimension formula obtained by using a particle swarm optimization for optimum gain pyramidal horns," Microwave and Optical Technology Letters, Vol. 48, 1201-1205, 2006.
    doi:10.1002/mop.21580

    33. Mahanfar, A., S. Bila, M. Aubourg, and S. Verdeyme, "Cooperative particle swarm optimization of passive microwave devices," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 21, No. 1-2, 151-168, 2008.
    doi:10.1002/jnm.655

    34. Hao, W., G. Junping, J. Ronghong, Q. Jizheng, L. Wei, C. Jing, and L. Suna, "An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3018-3028, 2009.
    doi:10.1109/TAP.2009.2028608

    35. Goudos, S. K. and J. N. Sahalos, "Microwave absorber optimal design using multi-objective particle swarm optimization," Microwave and Optical Technology Letters, Vol. 48, 1553-1558, 2006.
    doi:10.1002/mop.21727

    36. Goudos, S. K., Z. D. Zaharis, M. Salazar-Lechuga, P. I. Lazaridis, and P. B. Gallion, "Dielecric filter optimal design suitable for microwave communications by using multiobjective evolutionary algorithms," Microwave and Optical Technology Letters, Vol. 49, No. 10, 2324-2329, 2007.
    doi:10.1002/mop.22755

    37. Goudos, S. K., Z. D. Zahairs, K. B. Baltzis, C. S. Hilas, and J. N. Sahalos, "A comparative study of particle swarm optimization and differential evolution on radar absorbing materials design or EMC applications," International Symposium on Electromagnetic Compatibility --- EMC Europe, Art. No. 5189697, 2009.

    38. Gangopadhyaya, M., P. Mukherjee, and B. Gupta, "Resonant frequency optimization of coaxially fed rectangular microstrip antenna using particle swarm optimization algorithm," Proceedings of the 2010 Annual IEEE India Conference: Green Energy, Comuting and Communication, INDICON, Art. No. 5712677, 2010.

    39. Fei, X., T. Xiao-Hong, W. Ling, and W. Tao, "Application of the particle swarm optimization in microwave engineering," IEEE MTT-S International Microwave Workshop Series IMWS on Art of Miniaturizing RF and Microwave Passive Components --- Proceeding , Art. No. 4782296, 187-189, 2008.

    40. Dib, N. and M. Khodier, "Design and optimization of multi-band Wilkinson power divider," International Journal of RF and Microwave Computer-aided Engineering, Vol. 18, No. 1, 14-20, 2008.
    doi:10.1002/mmce.20261

    41. Chauhan, N. C., M. V. Kartikeyan, and A. Mittal, "A modified particle swarm optimizer and its application to the design of microwave filters," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 6, 598-610, 2009.
    doi:10.1007/s10762-009-9474-x

    42. Ali, F. A. and K. T. Selvan, "A study of PSO and its variants in respect of microstrip antenna feed point optimization," Asia Pacific Microwave Conference, APMC 2009, Art. No. 5384147, 1817-1820, 2009.

    43. Chauhan, N. C., M. V. Kartikeyan, and A. Mittal, "A CAD of RF windows using multiobjective particle swarm optimization," IEEE Transactions on Plasma Science, Vol. 37, No. 6, Part 2, 1104-1109, 2009.

    44. Fornarelli, G. and L. Mescia, Swarm Intelligence for Electric and Electronic Engineering, CRC-Press, 2012.
    doi:10.4018/978-1-4666-2666-9