Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-10

A 3-D Unconditionally Stable Laguerre-Rpim Meshless Method for Time-Domain Electromagnetic Computations

By Feijiao Liu, Donglin Su, and Yilong Zhang
Progress In Electromagnetics Research M, Vol. 31, 279-293, 2013
doi:10.2528/PIERM13050609

Abstract

In this paper, a 3-D unconditionally stable meshless method is introduced to simulate time-domain electromagnetic problems. It combines the conventional radial point interpolation method (RPIM) and weighted decaying Laguerre polynomials together to discrete Maxwell's differential equations. The new method called Laguerre-RPIM retains the advantages of both the node-based meshless method and the unconditionally stable scheme of weighted Laguerre polynomials. The accuracy and efficiency of the proposed method are verified through two numeral examples. It can be seen from the computational results that the proposed method has a high accuracy and still remains stable when time step is 10 times of the Courant stability condition. Computational cost can be saved by more than 70% compared with the conventional RPIM method.

Citation


Feijiao Liu, Donglin Su, and Yilong Zhang, "A 3-D Unconditionally Stable Laguerre-Rpim Meshless Method for Time-Domain Electromagnetic Computations," Progress In Electromagnetics Research M, Vol. 31, 279-293, 2013.
doi:10.2528/PIERM13050609
http://www.jpier.org/PIERM/pier.php?paper=13050609

References


    1. Yee, K. S., "Numerical solution of initial boundary value problems involving Max-well's equations in isotropic media," IEEE Trans. on Antennas on Propag., Vol. 14, No. 3, 302-307, 1966.

    2. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

    3. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaros, "Efficient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011.

    4. Zhao, L. and K.-L. Wu, "A hybrid NFM/MoM full-wave analysis of layered prolate head model exposed to handset antenna," Progress In Electromagnetics Research, Vol. 123, 205-225, 2012.
    doi:10.2528/PIER11110801

    5. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress n Electromagnetics Research, Vol. 130, 525-540, 2012.

    6. Kong, , Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step ADI-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.

    7. Fotyga, G., K. Nyka, and M. Mrozowski, "Efficient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
    doi:10.2528/PIER12021609

    8. Wang, J. G. and G. R. Liu, "A point interpolation meshless method based on radial basis i functions," Int. J. Numer. Methods Eng., Vol. 54, 1623-1648, 2001.

    9. Kaufmann, T., C. Fumeaux, and R. Vahldieck, "The meshless radial point interpolation method for time-domain electromagnetics," Digests of IEEE MTT-S Int. Microw. Symp., Vol. 61, No. 64, Atlanta, GA, Jun. 15-20, 2008.

    10. Kaufmann, T., C. Fumeaux, and C. Engstrom, "A comparison of three meshless algorithms: Radial point interpolation, non-symmetric and symmetric Kansa method," Digests of IEEE MTT-S Int. Microw. Symp., 1-4, Atlanta, GA, Jun. 5-10, 2011.

    11. Fumeaux, C., T. Kaufmann, D. Baumann, and M. Klemm, "Conformal and multi-scale time-domain methods: From tetrahedral mesh to meshless discretisation," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 161-164, May 21-24, 2012.

    12. Lai, S. J., B. Z. Wang, and Y. Duan, "Meshless radial basis function method for transi-ent electromagnetic computations," IEEE Trans. on Magnetics, Vol. 44, No. 10, 2288-2295, 2008.
    doi:10.1109/TMAG.2008.2001796

    13. Tanaka, Y. and E. Kunisada, "Study on meshless method using RPIM for transient electromagnetic field," IEEE Trans. on Magnetics, Vol. 47, No. 5, 1178-1181, May 2011.
    doi:10.1109/TMAG.2010.2089044

    14. Yu, , Y. and Z. Chen, "A 3-D radial point interpolation method for meshless time-domain modeling," IEEE Trans. on Microwave Theory and Tech., Vol. 57, No. 8, 2015-2020.

    15. Yu, Y. and Z. Chen, "Towards the development of unconditionally stable time-domain meshless numerical methods," IEEE Trans. on Microwave Theory and Tech., Vol. 58, No. 3, 578-586, Mar. 2010.
    doi:10.1109/TMTT.2010.2040343

    16. Yu, Y. and Z. Chen, "Implementation of material interface conditionsin the radial point interpolation meshless method," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2916-2923, 2011.
    doi:10.1109/TAP.2011.2158969

    17. Yu, Y. and Z. Chen, "Meshless RPIM modeling of open-structures using PMLs," Digest of the 2010 IEEE International Microwave Symposium, 1, Anaheim, May 23-28, 2010.

    18. Chen, X., Z. Chen, Y. Yu, and D. Su, "An unconditionally stable radial point interpolation meshless method with Laguerre polynomials," IEEE Trans. on Antennas and Propag., Vol. 59, No. 10, 3756-3763, Oct. 2011.
    doi:10.1109/TAP.2011.2163769

    19. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
    doi:10.1109/TMTT.2003.808732

    20. Srinivasan, K., M. Swaminathan, and E. Engin, "Overcoming limitations of Laguerre-FDTD for fast time-domain EM simulation," EEE Int. Microwave Symp. Digest, 891-894, 2007.

    21. Lacik, J., "Laguerre polynomials' scheme of transient analysis: Scale factor and number of temporal basis functions," Radioengineering, Vol. 18, No. 1, 23-28, 2009.

    22. Ha, M. and M. Swaminathan, "A Laguerre-FDTD formulation for frequency-dependent dispersive materials," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, 225-227, Mar. 2011.
    doi:10.1109/LMWC.2011.2119296