Vol. 31

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-08

Realization of Linear-to-Circular Polarization Conversion by a Single Bifilar Particle

By Alexei Balmakou, Igor V. Semchenko, and Masaaki Nagatsu
Progress In Electromagnetics Research M, Vol. 31, 231-246, 2013
doi:10.2528/PIERM13050907

Abstract

In this paper, we provide a new theoretical model describing mechanism of electromagnetic radiation (and scattering) by passive single- and double-stranded (bifilar) helices. The proposed model is derived from basic physical principles till the end formulas which were computer processed for predicting a polarization type of the wave scattered by a helix. Comparison of the two types of helical oscillators revealed radical differences in their scattering performance (intensity and polarization). Optimal parameters of the bifilar helix for transformation of the polarization state from linear to circular were found for a non-axial direction of the incident and scattered field. Key features of the proposed model were confirmed by computer simulations.

Citation


Alexei Balmakou, Igor V. Semchenko, and Masaaki Nagatsu, "Realization of Linear-to-Circular Polarization Conversion by a Single Bifilar Particle," Progress In Electromagnetics Research M, Vol. 31, 231-246, 2013.
doi:10.2528/PIERM13050907
http://www.jpier.org/PIERM/pier.php?paper=13050907

References


    1. Lindell, I. V., A. H. Sihvola, and J. Kurkijarvi, "Karl F. Lindman: The last Hertzian, and a harbinger of electromagnetic chirality," IEEE Antennas and Propagation Magazine, Vol. 34, No. 3, 24-30, 1992.
    doi:10.1109/74.153530

    2. Guerin, F., P. Banneller, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application to the modelling of chiral composites. I: Simple effective-medium theories," Journal of Physics D: Applied Physics, Vol. 28, 623, 1995.
    doi:10.1088/0022-3727/28/4/004

    3. Roy, J. E. and L. Shafai, "Reciprocal circular-polarization-selective surface," IEEE Antennas and Propagation Magazine, Vol. 38, No. 6, 18-33, 1996.
    doi:10.1109/74.556517

    4. Hodgkinson, I. J., Q. Hong, K. E. Thorn, A. Lakhtakia, and M. W. Mccall, "Spacerless circular-polarization spectral-hole filters using chiral sculptured thin films: Theory and experiment," Optics Communications, Vol. 184, 57-66, 2000.
    doi:10.1016/S0030-4018(00)00935-4

    5. Yang, Z. Y., M. Zhao, P. X. Lu, and Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Optics Letters, Vol. 35, No. 15, 2588-2590, 2010.
    doi:10.1364/OL.35.002588

    6. Chremmos, I., "Analytical computation of the electro-magnetic field produced by an optical fiber helix," Progress In Electromagnetics Research B, Vol. 16, 189-207, 2009.
    doi:10.2528/PIERB09050503

    7. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by metamaterials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
    doi:10.2528/PIERB07121107

    8. Xiong, , X., X.-C. Chen, M. Wang, R.-W. Peng, D.-J. Shu, C. Sun, "Optically nonactive assorted helix array with interchangeable magnetic/electric resonance," Applied Physics Letters, Vol. 98, No. 7, 071901, 2011.
    doi:10.1063/1.3554704

    9. Semchenko, I. V., S. A. Khakhomov, and S. A. Tretyakov, "Chiral metamaterial with unit negative refraction index," The European Physical Journal Applied Physics, Vol. 46, No. 3, 32607, 2009.
    doi:10.1051/epjap:2008131

    10. Balmakov, A. P., I. V. Semchenko, S. A. Khakhomov, and M. Nagatsu, "Microwave circular polarizer based on bifilar helical particles," Problems of Physics, Mathematics and Technics, Vol. 1, No. 14, 7-12, 2013.

    11. Guven, K., E. Saenz, R. Gonzalo, E. Ozbay, and S. Tretyakov, "Metamaterial-based cloaking with sparse distribution of spiral resonators," Radio Science, Vol. 7711, No. 1, 771111-771114, 2010.

    12. Wu, C., H. Li, X. Yu, F. Li, H. Chen, and C. Chan, "Metallic helix array as a broadband wave plate," Physical Review Letters, Vol. 107, No. 7, 1-5, 2011.

    13. Semchenko, I. V., S. A. Khakhomov, E. V. Naumova, V. Y. Prinz, S. V. Golod, and V. V. Kubarev, "Study of the properties of artificial anisotropic structures with high chirality," Crystallography Reports, Vol. 56, No. 3, 366-373, 2011.
    doi:10.1134/S1063774511030278

    14. Seet, K. K., V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1 μm," Applied Physics Letters, Vol. 88, No. 22, 221101, 2006.
    doi:10.1063/1.2207841

    15. Volakis, J. L., Antenna Engineering Handbook, 4th Ed., 1754, McGraw-Hill Co., 2007.

    16. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, 337, Gordon and Breach, New York, 2001.

    17. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Applied Physics, Vol. 18, No. 2, 211-216, 1979.
    doi:10.1007/BF00934418

    18. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 4th Ed., 428, Butterworth-Heinemann, 1980.

    19. Yavorsky, B. M., A. A. Detlaf, and N. Weinstein, Handbook of Physics, 4th Ed., 965, Central Books Ltd., 1973.

    20. Balanis, C. A., "Antenna Theory," John Wiley and Sons, Inc., 960, 1996.

    21. Semchenko, I. V., S. A. Khakhomov, and A. P. Balmakov, "Polarization selectivity of electromagnetic radiation of deoxyribonucleic acid," Journal of Communications Technology and Electronics, Vol. 52, No. 9, 996-1001, 2007.
    doi:10.1134/S1064226907090070

    22. Semchenko, I., S. Khakhomov, and A. Balmakov, "Polarization selectivity of interaction of DNA molecules with X-ray radiation," Biophysics, Vol. 55, No. 2, 194-198, 2010.
    doi:10.1134/S0006350910020053

    23. Semchenko, I. V., S. A. Khakhomov, and A. L. Samofalov, "Transformation of the polarization of electromagnetic waves by helical radiators," Journal of Communications Technology and Electronics, Vol. 52, No. 8, 850-855, 2007.
    doi:10.1134/S1064226907080037

    24. Watson, J. D. and F. H. C. Crick, "A structure for deoxyribose nucleic acid," Nature, Vol. 171, No. 4356, 737-738, 1953.
    doi:10.1038/171737a0

    25. Mandelkern, M., J. G. Elias, D. Eden, and D. M. Crothers, "The dimensions of DNA in solution," Journal of Molecular Biology, Vol. 152, No. 1, 153-161, 1981.
    doi:10.1016/0022-2836(81)90099-1

    26. Wu, C., H. Li, Z. Wei, X. Yu, and C. T. Chan, "Theory and experimental realization of negative refraction in a metallic helix array," Physical Review Letters, Vol. 105, 247401, 2010.
    doi:10.1103/PhysRevLett.105.247401

    27. Cheng, Q. and T. Cui, "Negative refractions in uniaxially anisotropic chiral media," Physical Review B, Vol. 73, No. 11, 1-4, 2006.
    doi:10.1103/PhysRevB.73.113104

    28. Balmakou, A., I. Semchenko, and M. Nagatsu, "Realization of negative refraction in a bifilar prism-type array metamaterial," Applied Physics Express, Vol. 6, 072601, 2013.
    doi:10.7567/APEX.6.072601

    29. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
    doi:10.1163/156939303322226356

    30. Masson, J. and G. Gallot, "Terahertz achromatic quarter-wave plate," Optics Letters, Vol. 31, No. 2, 265-267, 2006.
    doi:10.1364/OL.31.000265

    31. Roberts, N. W., T.-H. Chiou, N. J. Marshall, and T. W. Cronin, "A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region," Nature Photonics, Vol. 189, 1038, 2009.