Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 33 > pp. 31-44


By H. Yang, X.-Y. Cao, J. Gao, W. Li, Z. Yuan, and K. Shang

Full Article PDF (423 KB)

A low radar cross section (RCS) metamaterial absorber (MMA) with an enhanced bandwidth is presented both numerically and experimentally. The MMA is realized by assembling three simple square loops in a three-layer structure according to the idea of separating electric and magnetic resonances. Different from one-layer MMA, the proposed MMA can effectively couple with the electric and magnetic components of the incident wave in different positions for fixed frequency, while, for different frequencies, it can trap the input power into different dielectric layers and absorb it in the lossy substrate. Experimental results indicate that the MMA exhibits a bandwidth of absorbance above 90% which is 4.25 times as that of one-layer MMA, and 10 dB RCS reduction is achieved over the range of 4.77-5.06 GHz. Moreover, the cell dimensions and total thickness of the MMA are only 0.17λ and 0.015λ, respectively. The low RCS properties of the MMA are insensitive to both polarization and incident angles.

H. Yang, X.-Y. Cao, J. Gao, W. Li, Z. Yuan, and K. Shang, "Low RCS Metamaterial Absorber and Extending Bandwidth Based on Electromagnetic Resonances," Progress In Electromagnetics Research M, Vol. 33, 31-44, 2013.

1. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.

2. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. Antennas Propag., Vol. 36, No. 10, 1443-1454, 1988.

3. Chambers, B. and A. Tennant, "Optimised design of Jaumann radar absorbing materials using a genetic algorithm," IEE Proc. - Radar, Sonar Navig., Vol. 43, No. 1, 23-30, 1996.

4. Reinert, J., J. Psilopoulos, J. Grubert, and A. Jacob, "On the potential of graded-chiral dallenbach absorbers," Microwave and Optical Technology Letters, Vol. 30, No. 4, 254-257, 2001.

5. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.

6. Hu, T., et al., "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.

7. Zhang, F., L. Yang, Y. Jin, and S. He, "Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating," Progress In Electromagnetics Research, Vol. 134, 95-109, 2013.

8. Dayal, G. and S. A. Ramakrishna, "Design of highly absorbing metamaterials for infrared frequencies," Optics Express, Vol. 20, 17503-17508, 2012.

9. Jiang, Z. H., et al., "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano, Vol. 5, 4641-4647, 2011.

10. Wang, J. Q., et al., "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, Vol. 20, 14871-14878, 2012.

11. Hao, J., et al., "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, Vol. 96, No. 25, 251104, 2010.

12. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.

13. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

14. Costa, F., et al., "A circuit-based model for the interpretation of perfect metamaterial absorber," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1201-1209, 2013.

15. Hu, T., et al., "Highly flexible wide angle of incidence terhertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 2411031-2411034, 20085.

16. Luukkonen , O., et al., "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3119-3125, 2009.

17. Landy, N. I., et al., "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B, Vol. 79, 125104, 2009.

18. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization intsensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.

19. Grant, J., et al., "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.

20. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 517, 2011.

21. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 191-201, 2012.

22. Lee, J., Y. Yoon, and S. Lim, "Ultra-thin polarization independent absorber using hexagonal interdigital metamaterial," ETRI Journal, Vol. 34, No. 1, 126-129, 2012.

23. Hu, T., et al., "A dual band terahertz metamaterial absorber," Journal of Physics D: Applied Physics, Vol. 43, No. 22, 2251021-2251025, 2010.

24. Ma, Y., et al., "A terahertz polarization insensitive dual band metamaterial absorber," Optics Letters, Vol. 36, No. 6, 945-947, 2011.

25. Furkan, D., K. Muharrem, U. Emin, and S. Cumali, "Dual-band polarization independent metamaterial absorber based on omega resonator and octa-starstrip configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, 2013.

26. Li, H., et al., "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 0149091-0149098, 2011.

27. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," Journal of Applied Physics, Vol. 110, No. 6, 0637021-0637025, 2011.

28. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

29. Shen, X., et al., "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Applied Physics Letters, Vol. 101, No. 15, 1541021-1541024, 2012.

30. Zhu, B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.

31. Zhu, W., et al., "Configurable metamaterial absorber with pseudo wideband spectrum," Optics Express, Vol. 20, No. 6, 6616-6621, 2012.

32. Shi, J. H., et al., "Tunable symmetric and asym-metric resonances in an asymmetrical splitring metamaterial," Journal of Applied Physics, Vol. 112, No. 7, 0735221-0735225, 2012.

33. Luo, H., Y. Z. Cheng, and R. Z. Gong, "Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches," European Physical Journal B, Vol. 81, 387-392, 2011.

34. Luo, H., T. Wang, R. Gong, Y. Nie, and X. Wang, "Extending the bandwidth of electric ring resonator metamaterial absorber," Chinese Phys. Lett., Vol. 28, No. 3, 034204, 2011.

35. Dimitriadis, A. I., et al., "A polarization-/angle-insensitive, bandwidth-optimized, metamaterial absorber in the microwave regime," Appl. Phys. A - Mater., Vol. 109, No. 4, 1065-1070, 2012.

36. Ye, Y. Q., Y. Jin, and S. L. He, "Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime," Physics Optics, Vol. 11, 1-6, 2009.

37. Ding, F., et al., "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.

38. Bao, S., C. R. Luo, Y. P. Zhang, and X. P. Zhao, "Broadband metamaterial absorber based on dendritic structure," Acta Phys. Sin., Vol. 59, No. 5, 318701-318705, 2010.

39. Sun, J., et al., "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, No. 22, 21155-21162, 2011.

40. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.

41. Lee, J. Y. and S. J. Lim, "Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, 2011.

42. Culhaoglu, A. E., et al., "Mono- and bistatic scattering reduction by a metamaterial low reflection coating," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 462-466, 2013.

© Copyright 2010 EMW Publishing. All Rights Reserved