Vol. 37

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-07-29

Design of Tiny Versatile UHF RFID Tags of Fragment-Type Structure

By Chenwei Yang, Gang Wang, and Da-Wei Ding
Progress In Electromagnetics Research M, Vol. 37, 161-173, 2014
doi:10.2528/PIERM14040302

Abstract

Small ultra high frequency (UHF) radio frequency identification (RFID) tags of fragment-type structure can be designed for broadband operation and for versatile impedance matching to different chips. The fragment-type tag structure can be optimized by using genetic algorithm. In our design, multi-objective evolutionary algorithm based on decomposition combined with enhanced genetic operators (MOEA/D-GO) is used for optimization searching. The multiple objectives are defined in terms of power transmission coefficients for operation in multiple RFID bands and for impedance matching to several prevailing RFID chips. For demonstration, a fragmented tiny square UHF tag of dimensions of 5.5 mm * 5.5 mm is designed for multi-band operation over the 433 MHz, 869 MHz and 915 MHz RFID bands, and a fragmented round tiny RFID tag of radius of 4.5 mm is also designed for versatile connection to five prevailing RFID chips at 915 MHz. The tiny round versatile tag is tested by connecting two chips, the IMPIMJ Monza-4 chip (11-143j) and ALIEN Higgs-3 chip (27-195j), respectively. Effects of input impedance and adjunct fragments on versatility of the design are further discussed.

Citation


Chenwei Yang, Gang Wang, and Da-Wei Ding, "Design of Tiny Versatile UHF RFID Tags of Fragment-Type Structure," Progress In Electromagnetics Research M, Vol. 37, 161-173, 2014.
doi:10.2528/PIERM14040302
http://www.jpier.org/PIERM/pier.php?paper=14040302

References


    1. Deng, J. H., W. S. Chan, B. Z. Wang, S. Y. Zheng, and K. F. Man, "An RFID multicriteria coarse and fine-Space tag antenna design," IEEE Trans. Ind. Electron., Vol. 58, 2522-2530, 2011.
    doi:10.1109/TIE.2010.2062479

    2. Babar, A., A. Elsherbeni, L. Sydanheimo, and L. Ukkonen, "RFID tags for challenging environments: Flexible high-dielectric materials and ink-jet printing technology for compact platform tolerant RFID tags," IEEE Microwave Mag., Vol. 14, 26-35, 2013.
    doi:10.1109/MMM.2013.2259391

    3. Marrocco, G., "Pervasive electromagnetics: Sensing paradigms by passive RFID technology," IEEE Wireless. Commun., Vol. 17, 10-17, 2010.
    doi:10.1109/MWC.2010.5675773

    4. Gao, J., J. Siden, and H.-E. Nilsson, "Printed electromagnetic coupler with an embedded moisture sensor for ordinary passive RFID tags," IEEE Electr. Devi. Lett., Vol. 32, 1767-1769, 2011.
    doi:10.1109/LED.2011.2170616

    5. Virtanen, J., L. Ukkonen, T. Bjorninen, A. Z. Elsherbeni, and L. Sydanheimo, "Inkjet-printed humidity sensor for passive UHF RFID systems," IEEE Trans. Instrument. Measurem., Vol. 60, 2768–-2777, 2011.
    doi:10.1109/TIM.2011.2130070

    6. Virkki, J., T. Bjorninen, T. Kellomaki, S. Merilampi, I. Shafiq, L. Ukkonen, L. Sydanheimo, and Y. C. Chan, "Reliability of washable wearable screen printed UHF RFID tags," Microelectron. Reliab., Vol. 54, 840-846, 2014.
    doi:10.1016/j.microrel.2013.12.011

    7. Amin, Y., Q. Chen, L. R. Zheng, and H. Tenhunen, "Development and analysis of flexible UHF antennas for green electronics," Progress In Electromagnetics Research, Vol. 130, 1-15, 2012.
    doi:10.2528/PIER12060609

    8. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electr. Lett., Vol. 36, 2057-2058, Dec. 2000.
    doi:10.1049/el:20001452

    9. Herscovici, N., M. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas Wirel. Propag. Lett., Vol. 1, 94-97, Jan. 2002.
    doi:10.1109/LAWP.2002.805128

    10. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prodo, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas Propag., Vol. 52, 1434-1445, Jun. 2004.
    doi:10.1109/TAP.2004.825648

    11. Thors, B., H. Steyskal, and H. Holter, "Broad-band fragmented aperture phased array element design using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 53, 3280-3287, Oct. 2005.
    doi:10.1109/TAP.2005.856340

    12. Ethier, J., D. McNamara, M. Chaharmir, and J. Shaker, "Reflectarray design using similarity-shaped fragmented sub-wavelength elements," Electr. Lett., Vol. 48, 900-902, 2012.
    doi:10.1049/el.2012.1457

    13. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. Antennas Propag., Vol. 53, 1939-1945, Jun. 2005.
    doi:10.1109/TAP.2005.848461

    14. John, M. and M. Amman, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas Wirel Propag. Lett., Vol. 6, 447-449, 2007.
    doi:10.1109/LAWP.2007.891962

    15. Kim, G. J. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," Proc. IEEE Int. Symp. Antennas Propag., 2087-2090, 2006.

    16. Jin, Z., H. Yang, X. Tang, and J. Mao, "Impedance analysis of the fragment-type tag antenna using FDTD," Proc. 8th Int. Symp. Antennas, Propag. and EM Theory, 260-262, 2010.

    17. Jin, Z., H. Yang, X. Tang, and J. Mao, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," Proc. 3rd Int. Joint Conf. Comput. Sci. Optim., Vol. 2, 259-262, 2010.

    18. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. Evol. Comput., Vol. 11, No. 6, 712-731, Dec. 2007.
    doi:10.1109/TEVC.2007.892759

    19. Li, H. and Q. Zhang, "Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II," IEEE Trans. Evol. Comput., Vol. 13, 284-302, Apr. 2009.
    doi:10.1109/TEVC.2008.925798

    20. Ding, D. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.
    doi:10.2528/PIERM13071610

    21. Marrocco, G., "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE Antennas Propag. Mag., Vol. 50, No. 1, 66-79, 2008.
    doi:10.1109/MAP.2008.4494504

    22. Loo, C. H., K. Elmahgoub, and F. Yang, "Chip impedance matching for UHF RFID tag antenna design," Progress In Electromagnetics Research, Vol. 81, 359-370, 2008.
    doi:10.2528/PIER08011804

    23. Kurokawa, K., "Power waves and the scattering matrix Techniques,", Vol. 13, 194-202, 1965.

    24. Ansoft HFSS (High Frequency Structure Simulator), http://www.ansoft.com/products/hf/hfss/, .

    25. Matlab (Matrix Laboratory), http://www.mathworks.cn/products/matlab/, .

    26. Impinj Monza-4, http://www.impinj.com/Monza RFID Chips.aspx, .

    27. Alien Higgs-3, http://www.alientechnology.com/ic/, .

    28. Alien Higgs-4, http://www.alientechnology.com/ic/, .

    29., , TI RI-UHF-STRAP-08, http://www.alldatasheet.com/datasheet-pdf/pdf/-177692/TI/RI-UHFSTRAP-08.html.

    30., , NXP UCODE G2XM, http://www.nxp.com/products/identification an-d security/smart_label_and_tag_ics/ucode/#overview..