Vol. 36
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-21
A Novel Simulation Approach of Aircraft Dynamic RCS
By
Progress In Electromagnetics Research M, Vol. 36, 85-91, 2014
Abstract
The Radar Cross Section(RCS) of moving targets varies dramatically with aspect or time. The accuracy of simulated dynamic RCS is very important for radar system simulation. A novel simulation approach of aircraft's dynamic RCS is proposed in this paper. Firstly, the electromagnetic (EM) model of aircraft is built and the all-space mono-static RCS database calculated. Secondly, the aspect angles (azimuth and elevation) in target coordinate system are calculated from flight path by coordinate transformation. Then dynamic RCS is obtained based on database and aspect angles by linear interpolation method. Account for the influence results from aircraft vibration in target motion, we use a white Gaussian distributed random series to modify the simulated results. The statistical characteristics of three kinds of dynamic RCS values are investigated, and the desirable agreement of results between modification and measurement shows the applicability of this simulation approach.
Citation
Ya-Qiang Zhuang, Chen-Xin Zhang, and Xiao-Kuan Zhang, "A Novel Simulation Approach of Aircraft Dynamic RCS," Progress In Electromagnetics Research M, Vol. 36, 85-91, 2014.
doi:10.2528/PIERM14040311
References

1. Shi, W. Q., X. W. Shi, and L. Xu, "RCS characterization of stealth target using χ2 distribution and lognormal distribution," Progress In Electromagnetics Research M, Vol. 27, 1-10, 2012.
doi:10.2528/PIERM12091212

2. Shnidman, D. A., "Expanded swerling target models," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3, 1059-1069, 2003.
doi:10.1109/TAES.2003.1238757

3. Dai, C., Z. H. Xu, and S. P. Xiao, "Analysis for differences between dynamic and static RCS characteristics of radar target," Journal of Signal Processing, Vol. 29, No. 9, 1256-1263, 2013 (in Chinese).

4. Su, D. L., G. Q. Zeng, Y. Liu, and G. Y. Wang, "RCS study of moving radar target," Journal of Beijing University of Aeronautics and Astronautics, Vol. 32, No. 12, 1413-1417, 2006 (in Chinese).

5. Seo, D. W., H. J. Nam, O. J. Kwon, and N. H. Myung, "Dynamic RCS estimation of chaff clouds," IEEE Transaction on Aerospace Electronic System, Vol. 48, No. 3, 2114-2127, 2012.
doi:10.1109/TAES.2012.6237582

6. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with NURBS surfaces used for calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

7. Wu, Y., L. Jiang, and W. C. Chew, "An e±cient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308

8. Chen, M., Y. Zhang, and C. H. Liang, "Calculation of the field distribution near electrically large nurbs surfaces with physical-optics method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886

9. Li, J. B., X. S. Wang, and L. H. Qu, "Calculation of physical optics integral over NURBS surface using a delaminating quadrature method," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2388-2397, 2012.
doi:10.1109/TAP.2012.2189728

10. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

11. Hémon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

12. Swerling, P., "Radar probability of detection for some additional fluctuation target cases," IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, No. 2, 698-709, 1997.
doi:10.1109/7.588492

13. Zhou, P., MATLAB Probability and Mathematical Statistics, 218-220, Tsinghua University Press, Beijing, 2012 (in Chinese).