PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 73-82

MODIFIED RANSAC FOR SIFT-BASED INSAR IMAGE REGISTRATION

By Y. Wang, H. Huang, Z. Dong, and M. Wu

Full Article PDF (4,824 KB)

Abstract:
In this paper, we propose a modified version of the Random Sample Consensus (RANSAC) method for Interferometric Synthetic Aperture Radar (InSAR) image registration based on the Scale-Invariant Feature Transform (SIFT). Because of speckle, the ``maximization of inliers'' criterion in the original RANSAC cannot obtain the optimal results. Since in InSAR image registration, the registration accuracy is in inverse proportion to number of residues. Therefore, we modify the old criterion with a new one --- minimization of residues --- to obtain the optimal results. We tested our method on a variety of real data from different sensors, and the experimental results demonstrated the validity and robustness of the proposed method.

Citation:
Y. Wang, H. Huang, Z. Dong, and M. Wu, "Modified RANSAC for Sift-Based InSAR Image Registration," Progress In Electromagnetics Research M, Vol. 37, 73-82, 2014.
doi:10.2528/PIERM14042202

References:
1. Bamler, R. and P. Hartl, "Synthetic aperture radar interferometry," Inverse Problems, Vol. 14, R1-R54, 1998.
doi:10.1088/0266-5611/14/4/001

2. Hanssen, R. F., Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic, 2001.

3. Li, C. and D. Y. Zhu, "A residue-pairing algorithm for InSAR phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.
doi:10.2528/PIER09070706

4. Wu, B. I., M. C. Yeung, Y. Hara, and J. A. Kong, "InSAR height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902

5. Li, S., H. Xu, and L. Zhang, "An advanced DSS-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
doi:10.2528/PIER11042301

6. Liu, Q., S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The ``slope" effect of coherent transponder in InSAR DEM," Progress In Electromagnetics Research, Vol. 127, 351-370, 2012.
doi:10.2528/PIER12022111

7. Stone, H. S., M. T. Orchard, E. C. Change, and S. A. Martucci, "A fast direct Fourier based algorithm for subpixel registration of images," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 10, 2235-2243, 2001.
doi:10.1109/36.957286

8. Lin, Q., J. F. Vesecky, and H. A. Zebker, "New approaches in interferometric SAR data processing," IEEE Trans. Geosci Remote Sens., Vol. 30, No. 3, 560-567, 1992.
doi:10.1109/36.142934

9. Gabriel, K. and R. M. Goldstein, "Crossed orbit interferometry: Theory and experimental results from SIR-B," Int. J. Remote Sens., Vol. 9, No. 5, 857-872, Sep. 1988.
doi:10.1080/01431168808954901

10. Natsuaki, R. and A. Hirose, "SPEC method --- A fine coregistration method for SAR interferometry," IEEE Trans. Geosci Remote Sens., Vol. 49, No. 1, 28-37, 2011.
doi:10.1109/TGRS.2010.2057435

11. Li, D. and Y. H. Zhang, "A fast offset estimation approach for InSAR image subpixel registration," IEEE Geosci Remote Sens Letters., Vol. 9, No. 2, 267-271, 2011.
doi:10.1109/LGRS.2011.2166752

12. Lowe, D. G., "Object recognition from local scale-invariant features," IEEE International Conference on Computer Vision, Vol. 2, 1150-1157, Kerkyra, Greece, Sep. 20-27, 1999.

13. Lowe, D. G., "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., Vol. 60, No. 2, 91-110, 2004.
doi:10.1023/B:VISI.0000029664.99615.94

14. Fischler, M. A. and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM, Vol. 24, No. 6, 381-395, 1981.
doi:10.1145/358669.358692

15. Schwind, P., S. Suri, P. Reinartz, and A. Siebert, "Applicability of the SIFT operator for geometrical SAR image registration," Int. J. Remote Sens., Vol. 31, No. 8, 1959-1980, 2010.
doi:10.1080/01431160902927622

16. Morel, J. M. and G. S. Yu, "ASIFT: A new framework for fully affine invariant image comparison," SIAM J. Imag. Sci., Vol. 2, No. 2, 438-469, 2009.
doi:10.1137/080732730

17. Li, Q. L., G. Y. Wang, J. G. Liu, and S. B. Chen, "Robust scale-invariant feature matching for remote sensing image registration," EEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 287-291, 2009.
doi:10.1109/LGRS.2008.2011751

18. Suri, S., P. Schwind, J. Uhl, and P. Reinartz, "Modifications in the SIFT operator for effective SAR image matching," nt. J. Image Data Fus., Vol. 1, No. 3, 243-256, 2010.
doi:10.1080/19479832.2010.495322

19. Wang, S., H. You, and K. Fu, "BFSIFT: A novel method to find feature matches for SAR image registration," IEEE Trans. Geosci. Remote Sens., Vol. 9, No. 4, 649-653, 2012.
doi:10.1109/LGRS.2011.2177437

20. Goncalves, H., L. Corte-Real, and J. Goncalves, "Automatic image registration through image segmentation and SIFT," IEEE Trans. Geosci Remote Sens., Vol. 49, No. 7, 2589-2600, 2011.
doi:10.1109/TGRS.2011.2109389

21. Goldstein, R. M., H. A. Zebker, and C. L.Werner, "Satellite radar interferometry: Two-dimensional phase unwrapping," Radio Science, Vol. 23, No. 4, 713-720, 1988.
doi:10.1029/RS023i004p00713

22. Guarnier, M. I. and C. Prati, "A quick and dirty coherence estimator for data browsing," IEEE Trans. Geosci. Remote Sensing, Vol. 35, 660-669, May 1997.
doi:10.1109/36.581984


© Copyright 2010 EMW Publishing. All Rights Reserved