PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 109-118

PROPERTIES OF MUSIC-TYPE ALGORITHM FOR IMAGING OF THIN DIELECTRIC INHOMOGENEITY IN LIMITED-VIEW INVERSE SCATTERING PROBLEM

By W.-K. Park

Full Article PDF (285 KB)

Abstract:
It is well known that MUltiple SIgnal Classification (MUSIC)-type algorithm produces a good result for the imaging of thin dielectric inhomogeneity in full-view inverse scattering problems. In contrast, it yields a poor result in limited-view inverse scattering problems. In this paper, we verify the reason for the above by establishing a relationship between a MUSIC-type imaging function and the Bessel functions of the integer order of the first kind. This verification is based on the asymptotic expansion formula for thin dielectric inhomogeneity. Various numerical examples are shown for confirming our verification.

Citation:
W.-K. Park, "Properties of MUSIC-Type Algorithm for Imaging of Thin Dielectric Inhomogeneity in Limited-View Inverse Scattering Problem," Progress In Electromagnetics Research M, Vol. 37, 109-118, 2014.
doi:10.2528/PIERM14050403

References:
1. Alvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038

2. Ammari, H., J. Garnier, V. Jugnon, and H. Kang, "Stability and resolution analysis for a topological derivative based imaging functional," SIAM J. Control. Optim., Vol. 50, 48-76, 2012.
doi:10.1137/100812501

3. Ammari, H., J. Garnier, H. Kang, W.-K. Park, and K. Solna, "Imaging schemes for perfectly conducting cracks," SIAM J. Appl. Math., Vol. 71, 68-91, 2011.
doi:10.1137/100800130

4. Ammari, H., E. Iakovleva, and aD. Lesselier, "A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency," SIAM Multiscale Modeling Simulation, Vol. 3, 597-628, 2005.
doi:10.1137/040610854

5. Ammari, H., H. Kang, E. Kim, K. Louati, and M. S. Vogelius, "A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements," Numer. Math., Vol. 108, 501-528, 2008.
doi:10.1007/s00211-007-0130-x

6. Ammari, H., H. Kang, H. Lee, and W.-K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., Vol. 32, 894-922, 2010.
doi:10.1137/090749013

7. Beretta, E. and E. Francini, "Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections," Contemp. Math., Vol. 333, 49-63, 2003.
doi:10.1090/conm/333/05953

8. Chen, X. and Y. Zhong, "MUSIC electromagnetic imaging with enhanced resolution for small inclusions," Inverse Problems, Vol. 25, 015008, 2009.
doi:10.1088/0266-5611/25/1/015008

9. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01

10. Joh, Y.-D. and W.-K. Park, "Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks," Progress In Electromagnetics Research, Vol. 138, 211-226, 2013.
doi:10.2528/PIER13013104

11. Kwon, Y. M. and W.-K. Park, "Analysis of subspace migration in the limited-view inverse scattering problems," Appl. Math. Lett., Vol. 26, 1107-1113, 2013.
doi:10.1016/j.aml.2013.05.015

12. Ma, Y.-K., P.-S. Kim, and W.-K. Park, "Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducing cracks," Progress In Electromagnetics Research, Vol. 122, 311-325, 2012.
doi:10.2528/PIER11092901

13. Ma, Y.-K. and W.-K. Park, "A topological derivative based non-iterative electromagnetic imaging of perfectly conducting cracks," J. Electromagn. Eng. Sci., Vol. 12, 128-134, 2012.

14. Nazarchuk, Z. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetics Research, Vol. 55, 95-116, 2005.
doi:10.2528/PIER05022003

15. Park, W.-K., "Multi-frequency topological derivative for approximate shape acquisition of curve-like thin electromagnetic inhomogeneities," J. Math. Anal. Appl., Vol. 402, 501-518, 2013.
doi:10.1016/j.jmaa.2013.03.040

16. Park, W.-K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008

17. Park, W.-K., "On the imaging of thin dielectric inclusions via topological derivative concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305

18. Park, W.-K., "Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusion," J. Comput. Phys., Vol. 231, 1426-1439, 2012.
doi:10.1016/j.jcp.2011.10.014

19. Park, W.-K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026

20. Park, W.-K. and D. Lesselier, "Fast electromagnetic imaging of thin inclusions in half-space affected by random scatterers," Waves Random Complex Media, Vol. 22, 3-23, 2012.
doi:10.1080/17455030.2010.536854

21. Park, W.-K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002

22. Park, W.-K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010

23. Rosenheinrich, W., "Tables of some indefinite integrals of bessel functions,", available at http://www.fh-jena.de/┬╗rsh/Forschung/Stoer/besint.pdf.

24. Solimene, R., A. Dell'Aversano, and G. Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
doi:10.2528/PIER12062103


© Copyright 2010 EMW Publishing. All Rights Reserved