PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 191-202

MICROWAVE TUNABLE METASURFACES IMPLEMENTED WITH FERROELECTRIC MATERIALS AND PERIODICAL COPPER WIRES

By L.-H. Yeh and J.-F. Kiang

Full Article PDF (563 KB)

Abstract:
A tunable metasurface composed of multiple resonant units is proposed, with each unit containing a block of SrTiO3 ferroelectric and a periodical copper-wire structure. The local transmission coefficient of the metasurface is controlled by voltagetuning the permittivity of SrTiO3 in each resonant unit. The function of this tunable metasurface is demonstrated by simulating beam steering at the angles of 30˚ and 14.47˚, respectively; as well as beam focusing at the focal lengths of 2λ0 and 4λ0, respectively.

Citation:
L.-H. Yeh and J.-F. Kiang, "Microwave Tunable Metasurfaces Implemented with Ferroelectric Materials and Periodical Copper Wires," Progress In Electromagnetics Research M, Vol. 37, 191-202, 2014.
doi:10.2528/PIERM14061606

References:
1. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 2013.
doi:10.1126/science.1232009

2. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light," Science, Vol. 33, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

3. Ni, X., A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nat. Commun., Vol. 4, Article No. 2807, 2013.

4. Farmahini-Farahani, M., J. Cheng, and H. Mosallaei, "Metasurfaces nanoantennas for light processing," J. Opt. Soc. Am. B, Vol. 30, No. 9, 2365-2370, 2013.
doi:10.1364/JOSAB.30.002365

5. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. Lett. B, Vol. 84, 205428, 2011.
doi:10.1103/PhysRevB.84.205428

6. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, 6328-6333, 2012.
doi:10.1021/nl303445u

7. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.
doi:10.1021/nl302516v

8. Lin, J., S. Wu, X. Li, C. Huang, and X. Luo, "Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays," Appl. Phys. Exp., Vol. 6, 022004, 2013.
doi:10.7567/APEX.6.022004

9. Ni, X., S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light Sci. Appl., Vol. 2, e72, 2013.
doi:10.1038/lsa.2013.28

10. Jiang, X.-Y., J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, and Y. Zhang, "An ultrathin terahertz lens with axial long focal depth based on metasurfaces," Opt. Exp., Vol. 21, No. 24, 30030-30038, 2013.
doi:10.1364/OE.21.030030

11. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.
doi:10.1103/PhysRevLett.110.203903

12. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.
doi:10.1021/nl304761m

13. Pu, M., P. Chen, C.Wang, Y.Wang, Z. Zhao, C. Hu, C. Huang, and X. Luo, "Broadband anomalous reflection based on gradient low-Q meta-surface," AIP Adv., Vol. 3, 052136, 2013.
doi:10.1063/1.4809548

14. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Exp., Vol. 21, No. 22, 27438-27451, 2013.
doi:10.1364/OE.21.027438

15. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401

16. Pfeiffer, C. and A. Grbic, "Cascaded metasurfaces for complete phase and polarization control," Appl. Phys. Lett., Vol. 102, 231116, 2013.
doi:10.1063/1.4810873

17. Pfeier, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," EEE Trans. Microwave Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173

18. Haus, H. A., Waves and Fields of Optoelectronics, Prentice-Hall, 1984.

19. Yeh, P. and C. Gu, Optics of Liquid Crystal Displays, Wiley, 1999.

20. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502

21. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.
doi:10.1007/978-3-662-09109-8

22. Haeni, J. H., et al., "Room-temperature ferroelectricity in strained SrTiO3," Nature, Vol. 430, 758-761, 2004.
doi:10.1038/nature02773

23. Jang, H. W., et al., "Ferroelectricity in strain-free SrTiO3 thin films," Phys. Rev. Lett., Vol. 104, 197601, 2010.
doi:10.1103/PhysRevLett.104.197601

24. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

25. Wang, G., D. Moses, A. J. Heeger, H.-M. Zhang, M. Narasimhan, and R. E. Demaray, "Poly(3-hexylthiophene) ¯eld-e®ect transistors with high dielectric constant gate insulator," J. Appl. Phys., Vol. 95, No. 1, 316-322, 2004.
doi:10.1063/1.1630693

26. Sheen, J., C.-Y. Li, L.-W. Ji, W.-L. Mao, W. Liu, and C.-A. Chen, "Measurements of dielectric properties of TiO2 thin ¯lms at microwave frequencies using an extended cavity perturbation technique," J. Mater. Sci.: Mater. Electron., Vol. 21, 817-821, 2010.
doi:10.1007/s10854-009-9999-8

27. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

29. Goodman, J. W., Introduction to Fourier Optics, 3rd Edition, Roberts and Company, 2005.


© Copyright 2010 EMW Publishing. All Rights Reserved