Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 191-202


By L.-H. Yeh and J.-F. Kiang

Full Article PDF (563 KB)

A tunable metasurface composed of multiple resonant units is proposed, with each unit containing a block of SrTiO3 ferroelectric and a periodical copper-wire structure. The local transmission coefficient of the metasurface is controlled by voltagetuning the permittivity of SrTiO3 in each resonant unit. The function of this tunable metasurface is demonstrated by simulating beam steering at the angles of 30˚ and 14.47˚, respectively; as well as beam focusing at the focal lengths of 2λ0 and 4λ0, respectively.

L.-H. Yeh and J.-F. Kiang, "Microwave Tunable Metasurfaces Implemented with Ferroelectric Materials and Periodical Copper Wires," Progress In Electromagnetics Research M, Vol. 37, 191-202, 2014.

1. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 2013.

2. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light," Science, Vol. 33, No. 6054, 333-337, 2011.

3. Ni, X., A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nat. Commun., Vol. 4, Article No. 2807, 2013.

4. Farmahini-Farahani, M., J. Cheng, and H. Mosallaei, "Metasurfaces nanoantennas for light processing," J. Opt. Soc. Am. B, Vol. 30, No. 9, 2365-2370, 2013.

5. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. Lett. B, Vol. 84, 205428, 2011.

6. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, 6328-6333, 2012.

7. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, 4932-4936, 2012.

8. Lin, J., S. Wu, X. Li, C. Huang, and X. Luo, "Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays," Appl. Phys. Exp., Vol. 6, 022004, 2013.

9. Ni, X., S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light Sci. Appl., Vol. 2, e72, 2013.

10. Jiang, X.-Y., J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, and Y. Zhang, "An ultrathin terahertz lens with axial long focal depth based on metasurfaces," Opt. Exp., Vol. 21, No. 24, 30030-30038, 2013.

11. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.

12. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.

13. Pu, M., P. Chen, C.Wang, Y.Wang, Z. Zhao, C. Hu, C. Huang, and X. Luo, "Broadband anomalous reflection based on gradient low-Q meta-surface," AIP Adv., Vol. 3, 052136, 2013.

14. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Exp., Vol. 21, No. 22, 27438-27451, 2013.

15. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.

16. Pfeiffer, C. and A. Grbic, "Cascaded metasurfaces for complete phase and polarization control," Appl. Phys. Lett., Vol. 102, 231116, 2013.

17. Pfeier, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," EEE Trans. Microwave Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.

18. Haus, H. A., Waves and Fields of Optoelectronics, Prentice-Hall, 1984.

19. Yeh, P. and C. Gu, Optics of Liquid Crystal Displays, Wiley, 1999.

20. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.

21. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.

22. Haeni, J. H., et al., "Room-temperature ferroelectricity in strained SrTiO3," Nature, Vol. 430, 758-761, 2004.

23. Jang, H. W., et al., "Ferroelectricity in strain-free SrTiO3 thin films," Phys. Rev. Lett., Vol. 104, 197601, 2010.

24. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.

25. Wang, G., D. Moses, A. J. Heeger, H.-M. Zhang, M. Narasimhan, and R. E. Demaray, "Poly(3-hexylthiophene) ¯eld-e®ect transistors with high dielectric constant gate insulator," J. Appl. Phys., Vol. 95, No. 1, 316-322, 2004.

26. Sheen, J., C.-Y. Li, L.-W. Ji, W.-L. Mao, W. Liu, and C.-A. Chen, "Measurements of dielectric properties of TiO2 thin ¯lms at microwave frequencies using an extended cavity perturbation technique," J. Mater. Sci.: Mater. Electron., Vol. 21, 817-821, 2010.

27. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.

28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

29. Goodman, J. W., Introduction to Fourier Optics, 3rd Edition, Roberts and Company, 2005.

© Copyright 2010 EMW Publishing. All Rights Reserved