Vol. 38
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-13
Photonic Analysis of Semiconductor Fibonacci Superlattices: Properties and Applications
By
Progress In Electromagnetics Research M, Vol. 38, 25-35, 2014
Abstract
In this paper, we theoretically study the phase treatment of reflected waves in one-dimensional Fibonacci photonic quasicrystals composed of nano-scale fullerene and semiconductor layers. The dependence of the phase shift of reflected waves for TE mode and TM mode on the wavelength and incident angle is calculated by using the theoretical model based on the transfer matrix method in the infrared wavelength region. In the band gaps of supposed structures, it is found that the phase shift of reflected wave changes more slowly than within the transmission band gaps. Furthermore, the phase shift decreases with the incident angle increasing for TE mode, and increases with the incident angle increasing for TM mode. Also, for the supposed structures it is found that there is a band gap which is insensitive to the order of the Fibonacci sequence. These structures open a promising way to fabricate subwavelength tunable phase compensators, very compact wave plates and phase-sensitive interferometry for TE and TM waves.
Citation
Hadi Rahimi, "Photonic Analysis of Semiconductor Fibonacci Superlattices: Properties and Applications," Progress In Electromagnetics Research M, Vol. 38, 25-35, 2014.
doi:10.2528/PIERM14070902
References

1. Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett., Vol. 53, 1951, 1984.
doi:10.1103/PhysRevLett.53.1951

2. Janot, C., Quasicrystals, Clarendon Press, Oxford, 1994.

3. Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Academic Press, New York, 1995.

4. Zoorob, M. E., M. D. Charlton, G. J. Parker, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature, Vol. 404, 740, 2000.
doi:10.1038/35008023

5. Albuquerque, E. L. and M. G. Cottam, Polaritons in Periodic and Quasiperiodic Structures, Elsevier, Amsterdam, 2004.

6. Luck, J. M., C. Godreche, A. Janner, and T. Janssen, "The nature of the atomic surfaces of quasiperiodic self-similar structures," J. Phys. A, Vol. 26, 1951, 1993.
doi:10.1088/0305-4470/26/8/020

7. Boyd, R. W., Nonlinear Optics, Academic Press, Boston, 2008.

8. Zhu, S., Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice," Science, Vol. 278, 843, 1997.
doi:10.1126/science.278.5339.843

9. Macia, E., "Optical applications of fibonacci dielectric multilayers," Ferroelectrics, Vol. 250, 401, 2001.
doi:10.1080/00150190108225111

10. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic onedimensional generalized multilayer Fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

11. Cojocaru, E., "Omnidirectional reflection from finite periodic and fibonacci quasi-periodic multilayers of alternating isotropic and birefringent thin films," Appl. Opt., Vol. 41, 747, 2002.
doi:10.1364/AO.41.000747

12. Zhang, H., S. Liu, X. Kong, B. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113, 2012.
doi:10.1016/j.ssc.2012.09.009

13. Zhang, H., J. Zhen, and W. He, "Omnidirectional photonic band gaps enhanced by Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals," Optik, Vol. 124, 4182, 2013.
doi:10.1016/j.ijleo.2012.12.047

14. Kratschmer, W., L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: A new form of carbon," Nature, Vol. 347, 354-358, 1990.
doi:10.1038/347354a0

15. Rosseinsky, M. J., A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, and A. V. Makhija, "Superconductivity at 28K in RbxC60," Phys. Rev. Lett., Vol. 66, 2830-2832, 1991.
doi:10.1103/PhysRevLett.66.2830

16. Taigaki, K., I. Hirosawa, T. W. Ebbsen, J. Mizuki, Y. Shimakawa, Y. Kubo, J. S. Tsai, and S. Kuroshima, "Superconductivity in sodium and lithium containing alkali-metal fullerides," Nature, Vol. 356, 419-421, 1992.
doi:10.1038/356419a0

17. Hiromichi, K. H., E. Y. Yasushi, A. Y. Yohji, K. K. Koichi, H. T. Takaaki, and Y. S. Shigeo, "Dielectric constants of C60 and C70 thin films," J. Phys. Chem. Solids, Vol. 58, 1923, 1997.

18. Haddon, R. C., "Conducting films of C60 and C70 by alkali metal doping," Nature, Vol. 350, 320-322, 1991.
doi:10.1038/350320a0

19. Xiong, Z. W., F. Jiang, and X. R. Chen, "Structural and optical properties of fullerenelike amorphous carbon with embedded dual-metal nanoparticles," J. of Alloys and Compounds, Vol. 574, No. 13, 2013.

20. Akkurt, F., "Laser induced electro-optical characterization of anthraquinone dye and fullerene C60 doped guest-host liquid crystal systems," J. of Molecular Liquids, Vol. 194, 241, 2014.
doi:10.1016/j.molliq.2014.02.040

21. Makarova, T. L., V. G. Melekhin, I. T. Serenkov, V. I. Sakharov, I. B. Zakharova, and V. E. Gasumyants, "Optical and electrical properties of C60Tex films," Phys. the Solid State, Vol. 43, 1393, 2001.
doi:10.1134/1.1386485

22. Xu, H., D. M. Chen, and W. N. Creager, "C60-induced reconstruction of the Ge(111) surface," Phys. Rev. B, Vol. 50, 8454, 1994.
doi:10.1103/PhysRevB.50.8454

23. Xu, Q., Y. Ling, T. Ogino, et al. "C60 single crystal films on GaAs (001) surfaces," Thin Solid Films, Vol. 281, 618, 1996.
doi:10.1016/0040-6090(96)08710-X

24. Giudice, E., E. Magnano, S. Rusponi, et al. "Morphology of C60 thin films grown on Ag (001)," Surf. Sci. Lett., Vol. 405, 561, 1998.
doi:10.1016/S0039-6028(98)00171-X

25. Peide, H., X. Bingshe, L. Jian, L. Xuguang, and H. BaoBand, "Band gaps of two-dimensional photonic crystal structure using fullerene films," Physica E, Vol. 25, 29, 2004.

26. Bingshe, X., H. Peide, L. Jian, L. Xuguang, and C. Mingwei, "Optical properties in 2D photonic crystal structure using fullerene and azafullerene thin films," Opt. Commun., Vol. 250, 120, 2005.
doi:10.1016/j.optcom.2005.02.017

27. Bingshe, X., H. Peide, L. Jian, B. Huiqiang, C. Mingwei, and H. Ichinose, "Theoretical investigation of the reflectivity of fullerene-(C60, C70)/AlN multilayers in UV region," Solid State Commun., Vol. 133, 353, 2005.
doi:10.1016/j.ssc.2004.11.041

28. Won-Chun, O. and K. Weon-Bae, "Characterization and photonic properties for the Ptfullerene/TiO2 composites derived from titanium (IV) n-butoxide and C60," J. of Industrial and Engineering Chemistry, Vol. 15, 791-797, 2009.

29. Wu, C., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," J. Electromagn. Waves Appl., Vol. 19, 1991-1996, 2006.

30. Merlin, R., K. Bajema, R. Clarke, and F. Juang, "Quasiperiodic GaAs-AlAs Heterostructures," Phys. Rev. Lett., Vol. 55, 1768, 1985.
doi:10.1103/PhysRevLett.55.1768

31. Albuquerque, E. L. and M. G. Cottam, "Theory of elementary excitations in quasiperiodic structure," Physics Reports, Vol. 376, 225-237, 2003.
doi:10.1016/S0370-1573(02)00559-8

32. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.