Vol. 39
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-11-14
Along-Track Motion Compensation for Strip-Map SAR Based on Resampling
By
Progress In Electromagnetics Research M, Vol. 39, 181-191, 2014
Abstract
The airborne or vehicle-based SARs are very vulnerable to the influences of airflows or road conditions so as to deviate from the predicted trajectory, which undermines the uniformity of the azimuth sampling. As a result, the SAR image quality can get impaired in varying degrees. Since the SAR systems are sensible to the track deviation, the motion compensation (MOCO) algorithms are always applied as pre-processing of SAR raw data. In this paper, mainly with regard to the motion error caused by the forward velocity variation, a `resampling MOCO' algorithm is proposed as an auxiliary of the widely used bulk MOCO. The simulation result has verified that the performance of the fundamental bulk MOCO algorithm is greatly improved utilizing the proposed method.
Citation
Hui Ma, Ming Bai, Bin Liang, and Jungang Miao, "Along-Track Motion Compensation for Strip-Map SAR Based on Resampling," Progress In Electromagnetics Research M, Vol. 39, 181-191, 2014.
doi:10.2528/PIERM14091804
References

1. Cumming, I. G., et al. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, 2004.

2. Fornaro, G., G. Franceschetti, and S. Perna, "Motion compensation errors: Effects on the accuracy of airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, 1338-1352, 2005.
doi:10.1109/TAES.2005.1561888

3. Kirk, Jr., J. C., "Motion compensation for synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 3, 338-348, 1975.
doi:10.1109/TAES.1975.308083

4. Franceschetti, G., et al. "SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw signal," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, 2323-2334, 2006.
doi:10.1109/TGRS.2006.873206

5. Buckreuss, S., "Motion errors in an airborne synthetic aperture radar system," European Transactions on Telecommunications, Vol. 2, No. 6, 655-664, 1991.
doi:10.1002/ett.4460020609

6. Wu, H. and T. Zwick, "Micro-air-vehicle-borne near-range SAR with motion compensation," Progress In Electromagnetics Research, Vol. 145, 11-18, 2014.

7. Wu, H. and T. Zwick, "Octave division motion compensation algorithm for near-range wide-beam SAR applications," Progress In Electromagnetics Research, Vol. 144, 115-122, 2014.
doi:10.2528/PIER13110802

8. Long, T., et al. "A DBS Doppler centroid estimation algorithm based on entropy minimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3703-3712, 2011.
doi:10.1109/TGRS.2011.2142316

9. Zhao, Y., et al. "A method of Doppler frequency rate estimation for millimeter-wave missile-borne SAR," 2012 IEEE 5th Global Symposium on Millimeter Waves (GSMM), 604-607, 2012.
doi:10.1109/GSMM.2012.6314411

10. Li, Y., et al. "A robust motion error estimation method based on raw data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2780-2790, 2012.
doi:10.1109/TGRS.2011.2175737

11. Wei, S.-J. and X.-L. Zhang, "Sparse autofocus recovery for under-sampled linear array SAR 3-D imaging," Progress In Electromagnetics Research, Vol. 140, 43-62, 2013.
doi:10.2528/PIER13020614

12. Moreira, J. R., "A new method of aircraft motion error extraction from radar raw data for real time motion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, 620, 1990.
doi:10.1109/TGRS.1990.572967

13. Zhang, L., et al. "A robust motion compensation approach for UAV SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 8, 3202-3218, 2012.
doi:10.1109/TGRS.2011.2180392

14. De Macedo, K. A. C., R. Scheiber, and A. Moreira, "An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3151-3162, 2008.
doi:10.1109/TGRS.2008.924004

15. Xing, M., et al. "Motion compensation for UAV SAR based on raw radar data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2870-2883, 2009.
doi:10.1109/TGRS.2009.2015657

16. Wahl, D., et al. "Phase gradient autofocus-a robust tool for high resolution SAR phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
doi:10.1109/7.303752

17. Isernia, T., et al. "Synthetic aperture radar imaging from phase-corrupted data," IEE Proceedings — Radar, Sonar and Navigation, Vol. 143, No. 4, 268-274, 1996.
doi:10.1049/ip-rsn:19960458

18. Liu, B. and W. Chang, "Range alignment and motion compensation for missile-borne frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 136, 523-542, 2013.
doi:10.2528/PIER12110809

19. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891

20. Rodriguez-Cassola, M., et al. "Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 4, 2949-2966, 2011.
doi:10.1109/TAES.2011.6034676

21. Prats, P., et al. "Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 3, 349-353, 2007.
doi:10.1109/LGRS.2007.895712

22. Zamparelli, V., S. Perna, and G. Fornaro, "An improved topography and aperture dependent motion compensation algorithm," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5805-5808, 2012.
doi:10.1109/IGARSS.2012.6352290

23. De Macedo, K. A. C. and R. Scheiber, "Precise topography- and aperture-dependent motion compensation for airborne SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, 172-176, 2005.
doi:10.1109/LGRS.2004.842465

24. Sun, G., et al. "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2308-2322, 2011.
doi:10.1109/TGRS.2010.2102040

25. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

26. Zhu, D., Y. Li, and Z. Zhu, "A keystone transform without interpolation for SAR ground movingtarget imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
doi:10.1109/LGRS.2006.882147

27. Franceschitti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, 1999.

28. Fornaro, G., "Trajectory deviations in airborne SAR: Analysis and compensation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, 997-1009, 1999.
doi:10.1109/7.784069

29. Tsunoda, S. I., et al. "Lynx: A high-resolution synthetic aperture radar," International Society for Optics and Photonics, AeroSense’99, 1999.