PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 40 > pp. 1-8

AN EFFICIENT MODE REDUCTION TECHNIQUE FOR MODELING OF WAVEGUIDE GRATINGS

By L. Yuan and Y. M. Wu

Full Article PDF (166 KB)

Abstract:
In this paper, an efficient mode reduction technique for eigenmode expansion method is developed to analyze 2-D waveguide grating structures which are a special class of piecewise uniform waveguides. To take advantage of the periodicity property of the structure, the eigenmode expansion method (EEM) is used with the scattering matrix method and a recursive-doubling procedure. In this situation, our proposed mode reduction technique achieves a significant speedup for gratings with large number of periods. Comprehensive numerical examples on the waveguide gratings are studied to validate the efficiency of our proposed mode reduction technique.

Citation:
L. Yuan and Y. M. Wu, "An Efficient Mode Reduction Technique for Modeling of Waveguide Gratings," Progress In Electromagnetics Research M, Vol. 40, 1-8, 2014.
doi:10.2528/PIERM14100305

References:
1. Liu, Q. H. and W. C. Chew, "Analysis of discontinuities in planar dielectric waveguides: An eigenmode propagation method," IEEE Transcations on Microwave Theory and Techniques, Vol. 39, No. 3, 422-430, 1991.
doi:10.1109/22.75283

2. Sztefka, G., H. P. Nolting, and , "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photonics Technology Letters, Vol. 5, 554-557, 1993.
doi:10.1109/68.215279

3. Willems, J., J. Haes, and R. Baets, "The bidirectional mode expansion method for 2-dimensional wave-guides — the TM case," Optical and Quantum Electronics, Vol. 27, 995-1007, 1995.
doi:10.1007/BF00558491

4. Helfert, S. F. and R. Pregla, "Efficient analysis of periodic structures," Journal of Lightwave Technology, Vol. 16, 1694-1702, 1998.
doi:10.1109/50.712255

5. Bienstmain, P. and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers ," Opt. Quant. Electron., Vol. 33, 327-341, 2001.
doi:10.1023/A:1010882531238

6. Silberstein, E., P. Lalanne, J. P. Hugonim, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A, Vol. 18, 2865-2875, 2001.
doi:10.1364/JOSAA.18.002865

7. Ctyrok´y, J., "Improved bidirectional mode expansion propagation algorithm based on Fourier series," Journal of Lightwave Technology, Vol. 25, No. 9, 2321-2330, 2007.
doi:10.1109/JLT.2007.901449

8. Rao, H., R. Scarmozzino, and R. M. Osgood, "A bidirectional beam propagation method for multiple dielectric interfaces," IEEE Photonics Technology Letters, Vol. 11, No. 7, 830-832, 1999.
doi:10.1109/68.769722

9. Ho, P. L. and Y. Y. Lu, "A stable bidirectional propagation method based on scattering operators," IEEE Photon. Technol. Lett., Vol. 13, No. 12, 1316-1318, 2001.
doi:10.1109/68.969893

10. Ho, P. L. and Y. Y. Lu, "A bidirectional beam propagation method for periodic waveguides," IEEE Photon. Technol. Lett., Vol. 14, 325-327, Mar. 2002.

11. Yuan, L. and Y. Y. Lu, "An efficient bidirectional propagation method based on Dirichlet-to-Neumann maps," IEEE Photonics Technology Letters, Vol. 18, 1967-1969, Sep. 2006.
doi:10.1109/LPT.2006.882279

12. Yuan, L. and Y. Y. Lu, "A recursive doubling Dirichlet-to-Neumann map method for periodic waveguides," Journal of Lightwave Technology, Vol. 25, 3649-3656, Nov. 2007.

13. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Edition, Artech House, 2000.

14. Mendoza-Suarez, A., F. Villa-Villa, and J. A. Gaspar-Armenta, "Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals," J. Opt. Soc. Am. B, Vol. 23, No. 10, 2249-2256, 2006.
doi:10.1364/JOSAB.23.002249

15. Mendoza-Suarez, A., H. P´erez-Aguilar, and F. Villa-Villa, "Optical response of a perfect conductor waveguide that behaves as a photonic crystal," Progress In Electromagnetics Research, Vol. 121, 433-452, 2011.
doi:10.2528/PIER11082405

16. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

17. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

18. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," Journal of Optical Society of America A, Vol. 13, No. 5, 1024-1035, 1996.
doi:10.1364/JOSAA.13.001024

19. Ctyroky, J., S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J.-P. Hugonin, and R. M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Optical and Quantum Electronics, Vol. 34, 455-470, 2002.
doi:10.1023/A:1015645425239

20. Chiou, Y. P., Y. C. Chiang, and H. C. Chang, "Improved three-points formulas considering the interface conditions in the finite-difference analysis of step-index optical devices," J. Lightwave Technology, Vol. 18, No. 2, 243-251, 2000.
doi:10.1109/50.822799

21. Bindal, P. and A. Sharma, "Modelling of photonic crystal waveguides: A simple and accurate approach," Optical and Quantum Electronics, Vol. 42, No. 8, 435-446, Jan. 2011.
doi:10.1007/s11082-010-9431-x


© Copyright 2010 EMW Publishing. All Rights Reserved