Vol. 40
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-03
Profiling Boundary Layer Temperature Using Microwave Radiometer in East Coast of China
By
Progress In Electromagnetics Research M, Vol. 40, 19-26, 2014
Abstract
The boundary layer temperature profile is very essential for modeling atmospheric processes, whose information can be obtained using radiosonde data generally. Beside this, ground-based multi-channel microwave radiometer (GMR) offers a new opportunity to automate atmospheric observations by providing temperature, humidity and liquid water content with high time resolution, such as MP-3000A ground-based multi-channel radiometer. An experiment in east coast of China for profiling boundary layer temperature was performed at Qingdao Meteorological Station from 1 March to 23 April in 2014 using an MP-3000A radiometer. Three techniques have been applied to retrieve the boundary layer temperature profile by using the experimental data, namely the linear regression method, the back propagation (BP) neural network method and the 1-D Variational (1D-VAR) method. Elevation scanning is introduced to help improve the accuracy and resolution of the retrievals for each technique. These results are compared with the radiosonde data at the same time. The preliminary results achieved by each method show that the average day root-mean-square (rms) error for temperature is within 1.0 K up to 2 km in height. The 1D-VAR technique seems to be the most effective one to improve the precision of the boundary layer temperature profile.
Citation
Ning Wang, Zhenwei Zhao, Leke Lin, Qing-Lin Zhu, Hong-Guang Wang, and Tingting Shu, "Profiling Boundary Layer Temperature Using Microwave Radiometer in East Coast of China," Progress In Electromagnetics Research M, Vol. 40, 19-26, 2014.
doi:10.2528/PIERM14101506
References

1. Cimini, D., et al. "Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry," IEEE Trans. Geosci. Rem. Sens., Vol. 49, No. 12, 4959-4969, 2011, Doi: 10.1109/TGRS.2011.2154337.
doi:10.1109/TGRS.2011.2154337

2. Lohnert, U. and O. Maier, "Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges," Atmos. Meas. Tech., Vol. 5, 1121-1134, 2012, Doi: 10.5194/amt-5-1121-2012.
doi:10.5194/amt-5-1121-2012

3. Westwater, E. R., "Ground-based microwave remote sensing of meteorological variables," Atmospheric Remote Sensing by Microwave Radiometry, M. Janssen (ed.), 145-213, Wiley & Sons Inc., 1993.

4. Cimini, D., et al. "Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC," Meteorlogische Zeitschrift, Vol. 15, No. 1, 45-56, 2006.
doi:10.1127/0941-2948/2006/0099

5. Westwater, E. R., "Ground-based dctcrmination of low altitude temperature profiles by microwaves," Mon. Weather Rev., Vol. 100, No. 1, 15-28, 1972.
doi:10.1175/1520-0493(1972)100<0015:GDOLAT>2.3.CO;2

6. Churnside, J. H., T. A. Stermitz, and J. A. Schroeder, "Temperature profiling with neural network inversion of microwave radiometer data," J. Atmos. Ocean. Technol., Vol. 11, No. 1, 105-109, 1994.
doi:10.1175/1520-0426(1994)011<0105:TPWNNI>2.0.CO;2

7. Cimini, D., J. A. Shaw, Y. Han, E. R. Westwater, V. Irisov, V. Leuski, and J. H. Churnside, "Air temperature profile and air-sea temperature difference measurements by infrared and microwave scanning radiometers," Radio Sci., Vol. 38, No. 3, 8045, 2003.
doi:10.1029/2002RS002632

8. Hewison, T. J., "Profiling temperature and humidity by ground-based microwave radiometers,", A Thesis Submitted for the Degree of Doctor of Philosophy, 2006.

9. Ludi, A., L. Martin, and C. Matzler, "The retrieval of temperature profiles with the ground based radiometer system ASMUWARA,", 2003.

10. Hewison, T. J. and C. Gaffard, "Combining data from ground-based microwave radiometers and other instruments in temperature and humidity profile retrievals," TECO 2006, 1-14, 2006.

11. Vandenverghe, F. and R. Ware, "4-dimensional variational assimilation of ground-based microwave observations during a winter fog event," International Symposium on Atmospheric Sensing with GPS, 2002.

12. Crewell, S. and U. Lohnert, "Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 7, 2195-2202, 2007.
doi:10.1109/TGRS.2006.888434

13. Cimini, D., T. J. Hewison, et al. "Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC," Meteorlogische Zeitschrift, Vol. 15, No. 5, 45-56, 2006.
doi:10.1127/0941-2948/2006/0099

14. Solheim, F., J. R. Godwin, E. R. Westwater, et al. "Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods," Radio Science, Vol. 33, No. 2, 393-404, 1998.
doi:10.1029/97RS03656

15. ITU-R P676-9 "Attenuation by atmospheric gased,", 2012.

16. Rodgers, C. D., "Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation," Rev. Geophys. Space Phys., Vol. 14, 609-624, 1976.
doi:10.1029/RG014i004p00609

17. Solheim, F., J. Godwin, and R. Ware, "Microwave radiometer for passively and remotely measuring atmospheric temperature, water vapour, and cloud liquid water profiles,", Final Contract Report DAAL01-96-2009, White Sands Missile Range, Available from http://radiometrics.com/eigenvalue.pdf, 1996.

18. Lohnert, U., S. Crewell, and C. Simmer, "An integrated approach toward retrieving physically consistent profiles of temperature, humidity, and cloud liquid water," J. Appl. Meteor., Vol. 43, 1295-1307, 2004.
doi:10.1175/1520-0450(2004)043<1295:AIATRP>2.0.CO;2

19. Rodgers, C. D., Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Co. Ltd., 2000.

20. Levenberg, K., "A method for the solution of certain nonlinear problems in least squares," Quart. Appl. Math., Vol. 2, 164, 1944.

21. Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters," SIAM J. Appl. Math., Vol. 11, 164, 1963.
doi:10.1137/0111030

22. Chan, P. W. and C. M. Li, "Application of a ground-based microwave radiometer in cloud observations," The 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Washington, DC, USA, Mar. 1-4, 2010.

23. Chan, P. W., K. C. Wu, and C. M. Shun, "Application of a ground-based microwave radiometer in aviation weather forecasting," 13th International Symposium for the Advancement of Boundary Layer Remote Sensing, Garmisch-Partenkirchen, Germany, Jul. 18-20, 2006.

24. Li, J., L.-X. Guo, L.-K. Lin, Y. Zhao, Z. Zhao, T. Shu, and H. Han, "A dual-frequency method of eliminating liquid water radiation to remotely sense cloudy atmosphere by ground-based microwave radiometer," Progress In Electromagnetics Research, Vol. 138, 629-645, 2013.
doi:10.2528/PIER13010201

25. Cimini, D., F. De Angelis, J.-C. Dupont, et al. "Mixing layer height retrievals by multichannel microwave radiometer observations," Atmospheric Measurement Techniques, 4971-4998, 2013.
doi:10.5194/amtd-6-4971-2013

26. Westwater, E. R. and M. T. Decker, "Application of statistical inversion to ground-based microwave remote sensing of temperature and water vapor profiles," Inversion Methods in Atmospheric Remote Sounding, A. Decker (ed.), 395-428, Academic Press, New York, 1977.

27. Basili, P., P. Ciotti, and D. Solimini, "Inversion of ground-based radiometric data by Kalman filtering," Radio Science, Vol. 16, No. 1, 83-91, 1980.
doi:10.1029/RS016i001p00083

28. Westwater, E. R., Y. Han, V. G. Irisov, and V. Y. Leuskiy, "Sea-air and boundary layer temperatures measured by a scanning 5-mm-wavelength radiometer: Recent results," Radio Science, Vol. 33, No. 2, 291-302, Mar.-Apr. 1998.
doi:10.1029/97RS02747

29. Ware, R. and R. Carpenter, "A multi-channel radiometric profiler of temperature, humidity, and cloud liquid," Radio Science, Vol. 38, No. 4, 2003.
doi:10.1029/2002RS002856