PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 42 > pp. 1-11

INVESTIGATION OF ANTENNA ARRAY CONFIGURATIONS USING FAR-FIELD HOLOGRAPHIC MICROWAVE IMAGING TECHNIQUE

By L. Wang, A. M. Al-Jumaily, and R. Simpkin

Full Article PDF (758 KB)

Abstract:
Biomedical imaging has played an important role in identifying and monitoring the effectiveness of the current state of the art treatments for many diseases. The authors recently proposed a novel single-transmitter-multiple-receiver holographic microwave imaging (HMI) technique for imaging small inclusion embedded in a dielectric object which has potential application in medical diagnostics. HMI image quality depends highly on the antenna baseline difference, in order words, the antenna array configuration. Different antenna arrays produce different quality of dielectric images by using HMI imaging algorithm. This paper investigates the antenna array configurations effect on image quality by using HMI imaging approach. Three configurations including spiral, random and regularly spaced arrays are presented in this paper. Both simulated and experimental results are obtained and compared to fully demonstrate the effectiveness of antenna arrays to the HMI technique. The results show that the proposed spiral and random array configurations have an ability to produce high-resolution images at significantly lower costs than regularly spaced arrays.

Citation:
L. Wang, A. M. Al-Jumaily, and R. Simpkin, "Investigation of Antenna Array Configurations Using Far-Field Holographic Microwave Imaging Technique," Progress In Electromagnetics Research M, Vol. 42, 1-11, 2015.
doi:10.2528/PIERM15011803

References:
1. Ghavami, N., G. Tiberi, D. J. Edwards, and A. Monorchio, "UWB microwave imaging of objects with canonical shape," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 231-239, 2012.
doi:10.1109/TAP.2011.2167905

2. Meaney, P. M., M.W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

3. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446

4. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, No. 5, 2119-2128, 2013.
doi:10.1109/TMTT.2013.2255884

5. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440

6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627

7. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

8. Rubæk, T., O. S. Kim, and P. Meincke, "Computational validation of a 3-D microwave imaging system for breast-cancer screening," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2105-2115, 2009.
doi:10.1109/TAP.2009.2021879

9. Semenov, S. Y., A. E. Bulyshev, A. Abubakar, V. G. Posukh, Y. E. Sizov, A. E. Souvorov, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 7, 2284-2294, 2005.
doi:10.1109/TMTT.2005.850459

10. O’Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002

11. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Holographic microwave imaging array for brain stroke detection," Journal of Signal and Information Processing, Vol. 4, No. 3B, 96-101, 2013.
doi:10.4236/jsip.2013.43B017

12. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging for medical applications," Journal of Biomedical Science and Engineering, Vol. 6, 823-833, 2013.
doi:10.4236/jbise.2013.68100

13. Wang, L., A. M. Al-Jumaily, and R. Simpkin, "Imaging of 3-D dielectric objects using far-field holographic microwave imaging technique," Progress In Electromagnetics Research B, Vol. 61, 135-147, 2014.
doi:10.2528/PIERB14082001

14. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Three-dimensional far-field holographic microwave imaging: An experimental investigation of dielectric object," Progress In Electromagnetics Research B, Vol. 61, 169-184, 2014.
doi:10.2528/PIERB14101502

15. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2337-2344, 2010.
doi:10.1109/TAP.2010.2048860

16. Klemm, M., D. Gibbins, J. Leendertz, T. Horseman, A.W. Preece, R. Benjamin, and I. J. Craddock, "Development and testing of a 60-element UWB conformal array for breast cancer imaging," Proc. 5th European Conf. Antennas and Propagation (EuCAP), 3077-3079, 2011.

17. Damez, J. L. and S. Clerjon, "Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview," Meat Science, Vol. 95, No. 4, 879-896, 2013.
doi:10.1016/j.meatsci.2013.04.037

18. Hu, T., Z. Xiao, J. Xu, and L. Wu, "Methods of personnel screening for concealed contraband detection by millimeter-wave radiometric imaging," Procedia Engineering, Vol. 7, 28-37, 2010.
doi:10.1016/j.proeng.2010.11.005


© Copyright 2010 EMW Publishing. All Rights Reserved