Vol. 44
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-23
Permanent Magnet System and Electron Gun Design for a 3rd Harmonic Peniotron
By
Progress In Electromagnetics Research M, Vol. 44, 101-108, 2015
Abstract
This study discusses the operating characteristics of a large-orbit electron gun and a corresponding permanent magnet system of a 3rd harmonic peniotron. After optimization, a novel axis-encircling electron beam with axial velocity spread 4.48%, guiding centre deviation ratio 6.97% and high velocity ratio 2.03 is obtained. Driven by the electron gun, an output power of 35.4 kW is obtained, and the device efficiency is up to 56.0%, which is an attractive result in laboratories. The main advantages of such a peniotron are its compact size and low cost, which can meet the needs of vehicle, airborne and other mobile devices. The numerical analysis reveals that the relative axial position between the electrode system and magnet system has a great influence on the device performance, which needs careful control and precise adjustment.
Citation
Xinhui Wu, Jianli Huo, Biao Hu, Jiayin Li, Jufen Li, and Puchun Chen, "Permanent Magnet System and Electron Gun Design for a 3rd Harmonic Peniotron," Progress In Electromagnetics Research M, Vol. 44, 101-108, 2015.
doi:10.2528/PIERM15082101
References

1. Singh, G. and B. N. N. Basu, "Modal analysis of azimuthally periodic vane-loaded cylindrical waveguide interaction structure for gyro-TWT," Progress In Electromagnetics Research, Vol. 70, 175-189, 2007.
doi:10.2528/PIER07010601

2. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35GHz Gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.
doi:10.2528/PIERB10110206

3. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305

4. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for its application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505

5. Idehara, T., I. Ogawa, S. Mitsudo, Y. Iwata, S. Watanabe, Y. Itakura, K. Ohashi, H. Kobayashi, T. Yokoyama, V. Zapevalov, M. Glyavin, A. Kuftin, O. Malygin, and S. Sabchevski, "Development of a high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet," Vacuum, Vol. 77, No. 4, 539-546, 2005.
doi:10.1016/j.vacuum.2004.09.022

6. Glyavin, M., S. Sabchevski, and T. Idehara, "Numerical analysis of weakly relativistic large orbit gyrotron with permanent magnet system," Int. J. Infr. Mill. Waves, Vol. 21, No. 8, 1211-1221, 2000.
doi:10.1023/A:1026443932009

7. Zapevalov, V., T. Idehara, and S. Sabchevski, "Design of a large orbit gyrotron with a permanent magnet system," Int. J. Infr. Mill. Waves, Vol. 24, No. 3, 253-260, 2003.
doi:10.1023/A:1021855115770

8. Vitello, P., "Design considerations for the gyro-peniotron oscillator," Int. J. Infr. Mill. Waves, Vol. 8, No. 5, 487-515, 1987.
doi:10.1007/BF01013261

9. Zhao, X. Y., J. Y. Li, and X. H. Wu, "Theoretical design and simulation of 8mm-band third-harmonic slotted peniotron," Chin. J. Vacuum Sci. Tec., Vol. 31, 194-200, 2011.

10. Wu, X. H., J. Y. Li, and B. Hu, "Numerical study of an 8mm third-harmonic peniotron with a gradual reversal of the magnetic field," Phys. Plas., Vol. 19, 023101-1-8, 2012.

11. Song, H. and T. Mulcahy, "A large orbit electron gun design for a terahertz harmonic gyrotron," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1437-1447, 2011.

12. Zurk, L. M. and P. E. Serafim, "Relativistic electron motion in a resonant cavity with time varying and inhomogeneous magnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 1, 129-143, 1994.
doi:10.1163/156939394X00849

13. Gallagher, D., M. Barsanti, F. Scafuri, and C. Armstrong, "High-power cusp gun for harmonic gyro-device applications," IEEE Trans. Plas. Sci., Vol. 28, 695-699, 2000.

14. Hu, B., J. Y. Li, X. H. Wu, T. M. Li, and Y. H. Zhou, "Design of a large-orbit electron gun with gradual reversal magnetic field for a W-band permanent magnet peniotron," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 9, 1136-1144, 2013.
doi:10.1080/09205071.2013.801043

15. Wu, X. H., J. Y. Li, B. Hu, and T. M. Li, "Generation of large-orbit electron beam using magnetron type injection gun," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 2070-2079, 2012.
doi:10.1080/09205071.2012.724774

16. Serrona, L., R. Fujisaki, A. Sugimura, T. Okuda, N. Adachi, H. Ohsato, I. Sakamoto, A. Nakanishi, M. Motokawa, D. Ping, and K. Hono, "Enhanced magnetic properties of Nd-Fe-B thin films crystallized by heat treatment," J. Magnetism Magnetic Materi., Vol. 260, 406-414, 2003.
doi:10.1016/S0304-8853(02)01380-X

17. Herrmannsfeldt, W. B., "Egun-an electron optics and gun design program,", Stanford Linear Accelerator Center, Stanford University, Stanford, California, 1979.

18. Kalyanasundaram, N. and P. Somaskandan, "Large-signal field analysis of an m-type travelling wave amplifier," Journal of Electromagnetic Waves and Applications, Vol. 7, 1355-1378, 1993.
doi:10.1163/156939393X00525