Vol. 45
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-18
Mathematical Analysis and Modeling of Single-Walled Carbon Nanotube Composite Material for Antenna Applications
By
Progress In Electromagnetics Research M, Vol. 45, 59-71, 2016
Abstract
In this paper, the mathematical analysis of a single-walled carbon nanotube composite material (SWCNT-composite) is presented in order to estimate its effective conductivity model and other important parameters. This composite material consists of SWCNT coated by other different materials. The effects of the radius of SWCNT and average thickness of coating layer on this effective conductivity model are investigated. The effects of using different types of coating materials with different radii of SWCNTs on the behavior of this composite material are also presented. An investigation of electromagnetic properties of SWCNT-composite material was carried out based on designing and implementing the dipole antenna configuration using a common electromagnetic engineering tool solver CST (MWS). The results obtained from comparisons between SWCNT and SWCNT-composite materials are presented based on their electromagnetic properties are also described in this paper.
Citation
Yaseen Naser Jurn, Mohd Fareq Bin Abd Malek, and Hasliza A. Rahim, "Mathematical Analysis and Modeling of Single-Walled Carbon Nanotube Composite Material for Antenna Applications," Progress In Electromagnetics Research M, Vol. 45, 59-71, 2016.
doi:10.2528/PIERM15091702
References

1. Wood, J. R. and H. D. Wagner, "Single-wall carbon nanotubes as molecular pressure sensors," Appl. Phys. Lett., Vol. 67, 2883-2885, 2000.
doi:10.1063/1.126505

2. Li, C. Y. and T. W. Chou, "Strain and pressure sensing using single-walled carbon nanotubes," Nanotechnology, Vol. 15, 1493-1496, 2004.
doi:10.1088/0957-4484/15/11/021

3. Li, J., Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, "Carbon nanotube sensors for gas and organic vapor detection," Nano Lett., Vol. 3, 929-933, 2003.
doi:10.1021/nl034220x

4. Besteman, K., J.-O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors," Nano Lett., 727-730, 2003.
doi:10.1021/nl034139u

5. Hoenlein, W., F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. V. Seidel, and E. Unger, "Carbon nanotube applications in microelectronics," IEEE Trans. on Components and Packaging Tech., Vol. 27, 629-634, 2004.
doi:10.1109/TCAPT.2004.838876

6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antenna and Propagation, Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865

7. Hanson, G. W. and J. A. Berres, "Multiwall carbon nanotubes at RF-THz frequencies: Scattering, shielding, effective conductivity and power dissipation," IEEE Transactions on Antenna and Propagation, Vol. 59, 3098-3103, 2011.
doi:10.1109/TAP.2011.2158951

8. Burke, P. J., "Lüttinger theory as a model of the gigahertz electrical properties of carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 1, 129-144, 2002.
doi:10.1109/TNANO.2002.806823

9. Burke, P. J., "Correction to L¨uttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 3, 331, 2004.

10. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 2, 55-58, 2003.
doi:10.1109/TNANO.2003.808503

11. Burke, P. J., "Correction to an RF circuit model for carbon nanotubes," IEEE Transaction on Nanotechnology, Vol. 3, 331, 2004.

12. Burke, P., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Transaction on Nanotechnology, Vol. 5, 314-334, 2006.
doi:10.1109/TNANO.2006.877430

13. Hanson, G. W. and J. Hao, "Infrared and optical properties of carbon nanotube dipole antennas," IEEE Transaction on Nanotechnology, Vol. 5, 766-775, 2006.
doi:10.1109/TNANO.2006.883475

14. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," IEEE Transaction on Antennas and Propagation, Vol. 54, 76-81, 2006.
doi:10.1109/TAP.2005.861550

15. Arash, B., Q. Wang, and V. K. Varadan, "Mechanical properties of carbon nanotube/polymer composites," Scientific Reports, Vol. 4, Article Number 6479, 1-8, 2014.

16. Chu, K. and S.-H. Park, "Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance," IEEE Electron Device Letters, Vol. 36, 50-52, 2015.
doi:10.1109/LED.2014.2374698

17. Fan, J., Z. Chen, N. Tang, H. Li, and Y. Yin, "Supercapacitors based on composite material of MnO2 and carbon nanotubes," Proceedings of the 13th IEEE International Conference on Nanotechnology Beijing, 933-963, China, 2013.

18. Aryasomayajula, L., R. Rieske, and K.-J. Wolter, "Application of copper-carbon nanotubes composite in packaging interconnects," 34th Int. Spring Seminar on Electronics Technology, 531-536, 2011.

19. Bakrudeen, S. B., "Dramatic improvement in mechanical properties and sem image analysis of AI-CNT composite," Proceedings of the International Conference on Advanced Nanomaterial & Emerging Engineering Technologies (ICANMEET-20J3), 184-189, 2013.
doi:10.1109/ICANMEET.2013.6609272

20. Han, W.-Q. and A. Zettl, "Coating single-walled carbon nanotubes with tin oxide," Nano Lett., Vol. 3, 681-683, 2003.
doi:10.1021/nl034142d

21. Li, H., C.-S. Ha, and II Kim, "Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment," Nanoscale Res. Lett., Vol. 4, 1384-1388, 2009.
doi:10.1007/s11671-009-9409-4

22. Su, Y., H. Wei, Z. Yang, and Y. Zhang, "Highly compressible carbon nanowires synthesized by coating single-walled carbon nanotubes," Carbon, Vol. 49, 3579-3584, 2001.
doi:10.1016/j.carbon.2011.04.060

23. Qunqinq, L., S. Fan, W. Han, C. H. Sun, and W. Liang, "Coating of carbon nanotube with nickel by electroless plating method," Jpn. J. Appl. Phys., Vol. 36, L501-L503, 1997.
doi:10.1143/JJAP.36.L501

24. Zhu, L., G. Lu, S. Mao, and J. Chen, "Ripening of silver nanoparticles on carbon nanotubes," Nano: Brief Rep. and Rev., Vol. 2, 149-156, 2007.

25. Morihisa, Y., C. Kimura, M. Yukawa, H. Aoki, T. Kobayashi, S. Hayashi, S. Akita, Y. Nakayama, and T. Sugino, "Improved field emission characteristic of individual carbon nanotube coated with boron nitride nanofilm," J. Vac. Sci. Technol. B, Vol. 26, 872-875, 2008.
doi:10.1116/1.2822990

26. Peng, Y. and Q. Chen, "Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite," Nanoscale Res. Lett., Vol. 7, 1-5, 2012.
doi:10.1186/1556-276X-7-1

27. Peng, Y. and Q. Chen, "Fabrication of copper/MWCNT hybrid nanowires using electroless copper deposition activated with silver nitrate," J. Electrochen Soc., Vol. 159, D72-D76, 2012.
doi:10.1149/2.047202jes

28. Hanson, G. W., "A common electromagnetic framework for carbon nanotubes and solid nanowires-spatially distributed impedance, and transmission line model," IEEE Transaction on Microwave Theory and Techniques, Vol. 59, 9-20, 2011.
doi:10.1109/TMTT.2010.2090693

29. Orfanidis, S. J., "Electromagnetic waves and antennas," Maxwell’s Equations, Chapter 1, 2010.

30. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antenna and Propagation Magazine, Vol. 50, 1-10, 2008.
doi:10.1109/MAP.2008.4563565

31. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley and Sons, USA, 2005.