Vol. 45
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-22
A Novel Wavenumber Domain Algorithm for Bistatic SAR Imaging Based on Equivalent Monostatic Model
By
Progress In Electromagnetics Research M, Vol. 45, 113-121, 2016
Abstract
Compared with traditional monostatic synthetic aperture radar (SAR), bistatic SAR (BiSAR) has stronger advantages in terms of anti-interference and anti-strike abilities. However, the complex system structure of BiSAR brings new difficulties to imaging processing. In order to make the imaging algorithms of traditional monostatic SAR apply to BiSAR imaging as well, this paper proposes an equivalent monostatic model for BiSAR. This model mainly provides two benefits: (1) The equivalent monostatic range history has the form of hyperbolic function; (2) The equivalent monostatic velocity of any scattering point in the observed scene, with respect to the radar platform, is not only the same but also invariant with the equivalent monostatic range. Due to the above benefits, a novel wavenumber domain algorithm (WDA) is further proposed for BiSAR imaging. Finally, the experimental results demonstrate that the proposed algorithm is effective and feasible.
Citation
Zongliang Wu, Xiaoling Zhang, and Xiliang Wu, "A Novel Wavenumber Domain Algorithm for Bistatic SAR Imaging Based on Equivalent Monostatic Model," Progress In Electromagnetics Research M, Vol. 45, 113-121, 2016.
doi:10.2528/PIERM15101001
References

1. Huang, J. Q., Q. Wang, and W. Q. Wu, "Motion compensation in SAS with multiple receivers based on range-Doppler imaging algorithm," International Conference on Electric Information and Control Engineering, 1476-1479, 2011.

2. Guan, J., H. X. Wang, M. Fan, and J. Wang, "The application of range Doppler algorithm for side-looking strip-map SAS," IEEE International Conference on Signal Processing, Communication and Computing, 1-4, 2013.

3. Di Lorenzo, P., S. Barbarossa, and L. Borgarelli, "Optimal beamforming for range-Doppler ambiguity minimization in squinted SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 1, 277-293, 2013.
doi:10.1109/TAES.2013.6404103

4. Li, D., G. S. Liao, W. Wang, and Q. Xu, "Extended azimuth nonlinear chirp scaling algorithm for bistatic SAR processing in high-resolution highly squinted mode," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 6, 1134-1138, 2014.
doi:10.1109/LGRS.2013.2288292

5. Chen, S. C., M. D. Xing, T. L. Yang, and Z. Bao, "A nonlinear chirp scaling algorithm for tandem bistatic SAR," IEEE International Geoscience and Remote Sensing Symposium, 2485-2488, 2013.

6. Xu, W., P. P. Huang, R. Wang, Y. K. Deng, and Y. C. Lu, "TOPS-mode raw data processing using chirp scaling algorithm," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 1, 235-246, 2014.
doi:10.1109/JSTARS.2013.2260134

7. Wang, R., O. Loffeld, H. Nies, S. Knedlik, M. Hagelen, and H. Essen, "Focus FMCW SAR data using the wavenumber domain algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 4, 2109-2118, 2010.
doi:10.1109/TGRS.2009.2034368

8. Liang, X. T. and Q. Wei, "Wavenumber domain algorithm for squint FMCW SAR," International Forum on Strategic Technology, Vol. 2, 1256-1260, 2011.

9. Li, Z. Y., J. J. Wu, Q. Y. Yi, Y. L. Huang, and J. Y. Yang, "A wavenumber-domain imaging algorithm for spaceborne/airborne hybrid bistatic SAR," IEEE Radar Conference, 1-5, 2013.

10. Rhode, S., K. Usevich, I. Markovsky, and F. Gauterin, "A recursive restricted total least-squares algorithm," IEEE Transactions on Signal Processing, Vol. 62, No. 21, 5652-5662, 2014.
doi:10.1109/TSP.2014.2350959

11. Rhode, S. and F. Gauterin, "Online estimation of vehicle driving resistance parameters with recursive least squares and recursive total least squares," IEEE Intelligent Vehicles Symposium, 269-276, 2013.

12. Cumming, I. G. and F. H. Wong, Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Boston, USA, 2004.

13. Zhang, P., X. Zhang, and G. Fang, "Comparison of the imaging resolutions of time reversal and back-projection algorithms in EM inverse scattering," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 6, 357-361, 2013.
doi:10.1109/LGRS.2012.2206012

14. Zhang, L., H. Li, and Z. Xu, "A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 9, 1460-1464, 2014.
doi:10.1109/LGRS.2013.2295326

15. Wang, Y., X. Zhang, W. Li, and J. Shi, "A new bistatic-based sparse linear array 3D imaging SAR model," IEEE International Geoscience and Remote Sensing Symposium, 463-466, 2008.