In the paper, we prove two theorems relating to the theory of thin impedance vibrator radiators excited by a lumped voltage generator under rather general conditions. The first theorem proves that influence of external electrodynamic media on the vibrator current distribution is limited and can be estimated using a small natural parameter. The second theorem ascertains that there exists principal possibility to compensate influence of spatial boundaries upon current distributions on a perfectly conductive vibrator by applying to its surface complex impedance with predetermined variation along the vibrator length. Several corollaries disclose a range of the theorems application and their fundamental importance.
2. Weiner, M. M., Monopole Antennas, Marcel Dekker, New York, 2003.
doi:10.1201/9780203912676
3. Nesterenko, M. V., V. A. Katrich, Yu.M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators, Theory and Applications, Springer Science+Business Media, New York, 2011.
doi:10.1007/978-1-4419-7850-9
4. Nesterenko, M. V., "The electomagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
doi:10.1615/TelecomRadEng.v61.i10.40
5. Nesterenko, M. V., V. A. Katrich, V. M. Dakhov, and S. L. Berdnik, "Impedance vibrator with arbitrary point of excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
doi:10.2528/PIERB08022805
6. Nesterenko, M. V., D. Yu. Penkin, V. A. Katrich, and V. M. Dakhov, "Equation solution for the current in radial impedance monopole on the perfectly conducting sphere," Progress In Electromagnetics Research B, Vol. 19, 95-114, 2010.
doi:10.2528/PIERB09111105
7. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.
8. Nesterenko, M. V., V. A. Katrich, S. L. Berdnik, Y. M. Penkin, and V. M. Dakhov, "Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902
9. Penkin, D. Y., V. A. Katrich, Y. . Penkin, M. V. Nesterenko, V. M. Dakhov, and S. L. Berdnik, "Electrodynamic characteristics of a radial impedance vibrator on a conduction sphere," Progress In Electromagnetics Research B, Vol. 62, 137-151, 2015.
doi:10.2528/PIERB14120102
10. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen," Progress In Electromagnetics Research B, Vol. 63, 275-288, 2015.
doi:10.2528/PIERB15043003
11. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova Dumka, Kiev, 1986 (in Russian).
12. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.